
Polymorphism, Recursive Data Types, Trees, and

Option Values

Björn Lisper

School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20)

Polymorphic types

Consider the good old length function:

let rec length l = match l with

| [] -> 0

| (x::xs) -> 1 + length xs

What is the type of length?

It could be int list -> int, or char list -> int, or even

(int list) list -> int! So it has many different types!

length should really work regardless of the type of the elements

It has type ’a list -> int, where ’a is a type variable

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 1

’a list -> int is a polymorphic type

length : ’a list -> int means that length has any type we can

obtain by replacing ’a with some arbitrary type

Examples:

’a← int =⇒ length : int list -> int

’a← char =⇒ length : char list -> int

’a← int list =⇒ length : (int list) list -> int

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 2

’a list -> int is the most general type of length

The type system of F# gives the most general type, unless you give an

explicit type declaration

Type inference is used to find this type

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 3

Some other polymorphic list functions (and lists):

List.head : ’a list -> ’a

List.tail : ’a list -> ’a list

take : int -> ’a list -> ’a list

drop : int -> ’a list -> ’a list

(@) : ’a list -> ’a list -> ’a list

(::) : ’a -> ’a list -> ’a list

[] : ’a list

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 4

A Restriction for Polymorphic Types

Some polymorphic expressions are not allowed

Due to some deep technical reasons

This is called the “value restriction”

Affects expressions that are not value expressions

A value expression can be evaluated no further. Some examples:

17 [] (2.3,[]) sqrt [1;2;3] failwith

Some expressions that are not value expressions (can be evaluated further):

17+33 [] @ [] sqrt 5.0 List.head [1;2;3] failwith "Error!"

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 5

The Value Restriction

The value restriction states that right-hand sides in let declarations that are

not value expressions can not be polymorphic

Some examples:

let a = 17 + x

\\ OK, 17 + x is not a value expression but has type int

let b = []

\\ OK, [] has polymorphic type ’a list but is a value expression

let c = [] @ []

\\ Not OK, [] @ [] has polymorphic type and is not a value expression

let d = 3 :: ([] @ [])

\\ OK, 3 :: ([] @ []) has (non-polymorphic) type int list

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 6

Fixing the Value Restriction

The value restriction can often be overcome by an explicit type annotation to

remove polymorphism:

let c = [] @ [] : int list

\\ OK, [] @ [] does not have a polymorphic type anymore

Sometimes some subexpressions can be evaluated to turn the right-hand
side into a value expression

Example: evaluating [] @ []→ [] in the declaration of c yields:

let c = []

\\ OK, [] is a value expression

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 7

Recursive Data Types

So far, we have defined data types with a number of cases, each of fixed size

How do we define data types for data like lists, which can have an arbitrary

number of elements?

By making the data type definition recursive:

type IntList = Nil | MkIntList of (int * IntList)

An element of type IntList can be either Nil, or a data structure that

contains an int and an IntList

Note similarity between data type declaration and context-free grammar

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 8

Some IntList examples:

Nil MkIntList

4 Nil

MkIntList

MkIntList

MkIntList

Nil

3

7

5

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 9

Polymorphism

F#’s own data type for list is polymorphic

We can roll our own polymorphic list data type:

type List<’a> = Nil | MkList of ’a * List<’a>

Here, ’a is a type variable. Note the syntax <...> for user-defined

polymorphic types: different from syntax for built-in polymorphic data types
like ’a list

This data type is precisely the same as F#’s list data type, except that the

constructor names are different!

Data type declarations can be recursive and polymorphic

Most of F#’s built-in data types can in principle be declared in the language

itself

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 10

Data Types for Trees

We can easily make our own data types for trees, like:

type Tree<’a> = Leaf of ’a | Branch of Tree<’a> * Tree<’a>

A data type for trees with data stored in the leaves

Leaf ’c’ Branch

Branch Branch

Leaf 4

Leaf 3

Leaf 17 Leaf [1;2] Leaf []

Branch

Branch

Leaf [3;3;3] Leaf [2]

Many other variations possible, see examples in the book

Let us use this type for now

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 11

Operations on Trees

Let us define some useful operations over our trees:

• a function to put the elements in a tree into a list,

• a function to compute the size (number of leaves) of a tree, and

• a function to compute the height of a tree.

(Code on next two slides)

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 12

To put the elements in a tree into a list:

fringe : Tree<’a> -> ’a list

let rec fringe t =

match t with

| Leaf x -> [x]

| Branch (t1,t2) -> fringe t1 @ fringe t2

Size (number of leaves):

treeSize : Tree<’a> -> int

let rec treeSize t =

match t with

| Leaf _ -> 1

| Branch (t1,t2) -> treeSize t1 + treeSize t2

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 13

Height:

treeHeight : Tree<’a> -> int

let rec treeHeight t =

match t with

| Leaf _ -> 0

| Branch (t1,t2) -> 1 + max (treeHeight t1) (treeHeight t2)

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 14

A Different Example: Arithmetic Expressions

Arithmetic expressions are really trees:

*/

+

(3.1/2.0) + (1.9*5.2)
3.1 2.0 1.9 5.2

Let us define a data type for arithmetic (floating-point) expressions! We can

then use it for various symbolic manipulations of such expressions

(Data type declaration on next slide)

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 15

type Expr = C of float | Add of Expr * Expr | Sub of Expr * Expr

| Mul of Expr * Expr | Div of Expr * Expr

Each tree now represents an arithmetic expression:

Add

Div Mul(3.1/2.0) + (1.9*5.2) */

+

3.1 2.0 1.9 5.2 C 3.1 C 2.0 C 1.9 C 5.2

Add (Div (C 3.1, C 2.0), Mul (C 1.9, C 5.2))

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 16

Evaluating Expressions

One operation is to evaluate expressions

eval : Expr -> float

let rec eval e =

match e with

| C x -> x

| Add (e1,e2) -> eval e1 + eval e2

| Sub (e1,e2) -> eval e1 - eval e2

| Mul (e1,e2) -> eval e1 * eval e2

| Div (e1,e2) -> eval e1 / eval e2

eval (Add ((C 17.0), Sub (C 3.0, C 1.0))) =⇒ 19.0

eval is a simple interpreter for our expression trees

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 17

Exercise (mini-project): extend Expr with variables. Then define a small

symbolic algebra package for manipulating and simplifying expressions, for
instance:

• evaluate constant subexpressions

• simplify as far as possible using algebraic identities

• symbolic derivation

• etc. . .

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 18

The Option Data Type

A builtin data type in F#

Would be defined as follows:

type ’a option = None | Some of ’a

A polymorphic type: for every type t, there is an option type t option

Option data types add an extra element None

Can be used to represent:

• the result of an erroneous computation (like division by zero)

• the absence of a “real” value

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 19

An Example: List.tryFind

List.tryFind : (’a -> bool) -> ’a list -> ’a option

A standard function in the List module

Takes a predicate p and a list l as arguments

Returns the first value in l for which p becomes true, or None if such a value

doesn’t exist in l

let rec tryFind p l =

match l with

| [] -> None

| x::xs when p x -> Some x

| _::xs -> tryFind p xs

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 20

List.tryFind even [1;3;8;2;5] =⇒ Some 8

List.tryFind even [1;3;13;13;5] =⇒ None

None marks the failure of finding a value that satisfies the predicate. The

caller can then take appropriate action if this situation occurs:

match List.tryFind p l with

| Some x -> x

| None -> (appropriate action when no matching element was found)

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 21

Error Handling with Error Values

Reconsider the example from last slide:

match List.tryFind p l with

| Some x -> x

| None -> (appropriate action when no matching element was found)

This shows how to use None as an error value

failwith will just break the computation, that is: a crash!

Error values can be examined and passed around. This allows for much
smoother error handling

You can also define your own data types with error values:

type T = Error1 | Error2 | Error3 int | ...

Polymorphism, Recursive Data Types, Trees, and Option Values (revised 2022-01-20) 22

