
Strings: a Programming Example

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Strings: a Programming Example (revised 2022-01-25)

String Processing

String (or text) processing is important

Conversions beween different formats: files, documents, XML,

web/database, etc.

I think functional programming is good for this kind of application

We will look at a simple example here: how to break a text into a list of
words, that can be used for various things like:

• counting the number of words in the text

• printing the text with a given maximal line length in characters (breaking
lines when next word does not fit in)

Strings: a Programming Example (revised 2022-01-25) 1

Strings

F# has a data type string for strings

We will not use this type for now

Rather, we will use lists of characters, of type char list

One reason: we then get a good exercise in list programming

Later, we’ll bring up the string datatype

We will then redo the example using strings rather than lists of characters

Strings: a Programming Example (revised 2022-01-25) 2

Breaking a String Into Words

Words are sequences of characters separated by one or more whitespace

characters: space, newline, tab

(In F#: ’ ’, ’\n’, ’\t’)

We want a function that converts a list of characters into a list of its words.

Words are also lists of characters

string2words : char list -> (char list) list

For instance,

string2words [’A’;’l’;’l’;’a’;’n’;’ ’;’t’;’a’;’r’;’ ’;’ ’;

’\t’;’ ’;’\n’;’k’;’a’;’k’;’a’;’n’]

=>

[[’A’;’l’;’l’;’a’;’n’];[’t’;’a’;’r’];[’k’;’a’;’k’;’a’;’n’]]

Strings: a Programming Example (revised 2022-01-25) 3

How code string2words?

We need a mental model. This is a simple parsing problem, which can be

solved by a finite automaton with two states:

skipping
whitespace

scanning

word

start
no−whitespace char

whitespace charwhitespace char no−whitespace char

Common design pattern: one function per state. When new character read

the function for the new state is called

Strings: a Programming Example (revised 2022-01-25) 4

We’ll use a variation of this pattern: in each state we will look ahead and
count the number of characters before changing to the other state:

• whitespace: count characters until non-whitespace char, then drop that

number of characters and call the other function on rest of list

• word: count characters until whitespace char, then save that number of
characters into list of characters and call the other function on rest of list

We can define a general list function drop to skip a number of characters:

drop 3 [1;4;2;5;6] =⇒ [5;6]

(drop n s returns the list remaining after take n s)

Exercise: define drop! (A solution on next slide)

Strings: a Programming Example (revised 2022-01-25) 5

let rec drop n l =

if n < 0 then

failwith "Negative argument"

else

match (n,l) with

| (0,_) -> l

| (_,x::xs) -> drop (n-1) xs

| (n,[]) -> failwith "List too short"

(This function is a little inefficient. Why?)

Strings: a Programming Example (revised 2022-01-25) 6

A First Solution

Functions to count characters until next whitespace and next no-whitespace,

respectively:

let rec find_ws l =

match l with

| [] -> 0

| c::cs -> if c = ’ ’ || c = ’\n’ || c = ’\t’

then 0 else 1 + find_ws cs

let rec find_nows l =

match l with

| [] -> 0

| c::cs -> if c <> ’ ’ && c <> ’\n’ && c <> ’\t’

then 0 else 1 + find_nows cs

Strings: a Programming Example (revised 2022-01-25) 7

Functions string2words and string2words1 corresponding to states

“skipping whitespace” and “scanning word”, respectively:

let rec string2words s =

match s with

| [] -> []

| _ -> string2words1 (drop (find_nows s) s)

and string2words1 s =

match s with

| [] -> []

| _ -> let n = (find_ws s)

in take n s :: string2words (drop n s)

Strings: a Programming Example (revised 2022-01-25) 8

This is a mutually recursive definition. The functions recursively call each

other

The keyword “and” is used to link mutually recursive declarations (why
would it not work with ordinary “let rec” for the second declaration?)

Note how the words are collected into separate lists by take

Also note that “::” in string2words1 puts the list of characters as

element into the list, so the returned list is a list of lists of characters (not list
of characters)

Strings: a Programming Example (revised 2022-01-25) 9

A More Elegant Slution

This solution works fine, but is a bit clumsy

In particular, find_ws and find_nows are very similar

They do precisely the same, but with negated conditions!

Can we “factor out” the common structure?

Yes, if we can make the condition a parameter to a more general function!

Let’s see on next slide how to do this . . .

Strings: a Programming Example (revised 2022-01-25) 10

A More General Character Count Function

F# has higher order functions

They are functions that take other functions as arguments, or return
functions as result

We can thus define a function find that takes a predicate p on characters
as first arguments and counts the number of characters up to the first

character c such that p c = true:

let rec find p l =

match l with

| [] -> 0

| x::xs -> if p x then 0 else 1 + find p xs

find : (char -> bool) -> (char list) -> int

(find will actually have a more “general” type. More on this later)

Strings: a Programming Example (revised 2022-01-25) 11

Predicate to check for whitespace:

let ws c =

match c with

| ’ ’ -> true

| ’\n’ -> true

| ’\t’ -> true

| _ -> false

ws : char -> bool

Strings: a Programming Example (revised 2022-01-25) 12

Then simply:

let find_ws s = find ws s

For find_nows, we must have a negated whitespace-predicate:

let not_ws c = not (ws c)

We get:

let find_nows s = find not_ws s

(A more elegant solution, avoiding these declarations, would be to use

nameless functions but we haven’t introduced them yet)

Strings: a Programming Example (revised 2022-01-25) 13

Final Solution

module String2words

let ws c =

match c with

| ’ ’ -> true

| ’\n’ -> true

| ’\t’ -> true

| _ -> false

let not_ws c = not (ws c)

let rec find p l =

match l with

| [] -> 0

| x::xs -> if p x then 0 else 1 + find p xs

let find_ws s = find ws s

let find_nows s = find (not_ws) s

Strings: a Programming Example (revised 2022-01-25) 14

Final Solution, Part 2

let rec string2words s =

match s with

| [] -> []

| _ -> string2words1 (drop (find_nows s) s)

and string2words1 s =

match s with

| [] -> []

| _ -> let n = (find_ws s)

in take n s :: string2words (drop n s)

Strings: a Programming Example (revised 2022-01-25) 15

Applications of string2words

Let’s do the two applications mentioned before:

• counting the number of words in the text

• printing the text with a given maximal line length in characters (breaking

lines when next word does not fit in)

Can you figure out how to do them?

Strings: a Programming Example (revised 2022-01-25) 16

How to do them

The first is easy: use the List.length function from the List module

let wordcount s = List.length (string2words s)

The second is more interesting . . .

Strings: a Programming Example (revised 2022-01-25) 17

A function words2lines linelen ws, where linelen is the line length

and ws is a list of words to be printed

Idea: keep a current position on the line, check length of next word, if greater

than linelen then start new line else output word on current line and
update position

Current position passed as argument

Local function to do this, so words2lines does not need to have this extra

argument

We will use the append (or concatenate) operation “@” on lists:

[1;2;3] @ [4;2] =⇒ [1;2;3;4;2]

Strings: a Programming Example (revised 2022-01-25) 18

The Solution

let words2lines linelen ws =

let rec

w2l l pos =

match l with

| [] -> []

| w::ws -> if pos + List.length w < linelen

then w @ [’ ’] @ w2l ws (pos + List.length w + 1)

else ’\n’ :: w @ [’ ’] @ w2l ws (List.length w + 1)

in w2l ws 0

Not perfect. Leaves space at end of each line. Somewhat poor treatment of
words longer than line length – always new line even if the long word is first

in list

Exercise: write a new solution that handles these cases better

Strings: a Programming Example (revised 2022-01-25) 19

Strings

string is a one of the builtin datatypes in F#

Strings are really a kind of immutable arrays, holding characters

There is a String module with operations on strings

Basic syntax for string constants: a string of characters inside "...":

"abc is bcd"

Familiar syntax for control characters: \n (newline), \t (tab), \\

(backslash), etc.

"Line 1\nSecond line"

Empty string: ""

Strings: a Programming Example (revised 2022-01-25) 20

Operations on Strings

Concatenation, or append: +

"abc" + "xyz" =⇒ "abcxyz"

Concatenation requires copying (potentially expensive). Use with care!

Selection of character from strings is done by indexing, s.[i]. String
indices start from 0

"abc".[0] =⇒ ’a’, "abc".[1] =⇒ ’b’, "abc".[2] =⇒ ’c’

Note that a character is returned, not a string

Strings: a Programming Example (revised 2022-01-25) 21

More Operations on Strings

Selection of substring, s.[i..j]:

"abc".[0..1] =⇒ "ab"

Also s.[i..] (all elements in s from i and up), s.[..i] (all elements in s

up to i):

"abc".[1..] =⇒ "bc", "abc".[..1] =⇒ "ab"

Note that here a string is returned, not a character

Selection of substring requires copying. Use with care!

Length of string: String.length

String.length "abc" =⇒ 3

Strings: a Programming Example (revised 2022-01-25) 22

Even More Operations on Strings

Some operations on strings use “dot” notation (object method style), some

examples:

s.Length (same as String.length s)

s.ToUpper(), s.ToLower()

"abc".ToUpper() =⇒ "ABC"

"AbC".ToLower() =⇒ "abc"

This syntax is really quite alien to functional languages, but is present in F#
due to its connections to the .NET with its object-oriented nature

If we don’t like it, we can easily define wrapper functions to hide it:

let toupper s = s.ToUpper()

Strings: a Programming Example (revised 2022-01-25) 23

String Programming Example Revisited

We now redo the example of breaking a string into words, with strings

It turns out we can still keep the same design

Our function string2words will map from string to string list

Strings: a Programming Example (revised 2022-01-25) 24

A Straightforward Solution

A straightforward scheme to convert from lists to strings:

1. Replace pattern-matching on lists with calls to List.head, List.tail,

List.isEmpty

2. Define versions of these functions that work on strings. Do the same for
take and drop

3. Replace each list function with its corresponding string function

Strings: a Programming Example (revised 2022-01-25) 25

Replacing Pattern-Matching with Function Calls

match l with

| [] -> ...

| x::xs -> ...x...xs...

=>

if List.isEmpty l

then ...

else ...List.head l...List.tail l...

Strings: a Programming Example (revised 2022-01-25) 26

String Functions

Declarations of string counterparts for head, tail, etc:

let s_head s = s.[0]

let s_tail s = s.[1..]

let s_take n s = s.[..n-1]

let s_drop n s = s.[n..]

let s_isempty s = s = ""

However, using them yields a problem!

Can you see what the problem is?

Strings: a Programming Example (revised 2022-01-25) 27

String Functions (II)

Some of them are terribly inefficient

Substring selection requires copying of the selected substring

s_tail is the worst culprit. Almost all of the string argument must be copied
to yield its tail. This is especially devastating when the tail is taken

recursively

s

s_tail s

Strings: a Programming Example (revised 2022-01-25) 28

A More Efficient Solution

Rather than using substring selection, we can add a number for the input
string that keeps track of the current position

It will act as a pointer to the position where the current substring starts

s

pos

The substring of string s at position pos is represented by the pair (pos,s)

Versions of head, tail, etc. for this representation on next page

Strings: a Programming Example (revised 2022-01-25) 29

Functions for the Efficient Representation

type pstring = int*string // alias for pair of int and string

let ps_head (pos,s) = s.[pos]

let ps_tail (pos,s) = (pos+1,s)

let ps_take n (pos,s) = s.[pos..pos+n-1] // returns string

let ps_drop n (pos,s) = (pos + n,s)

let ps_isempty (pos,s) = pos >= String.length s

(ps take returns a string rather than a pstring. For our purposes this

is appropriate. A version that returns a pstring is perfectly possible, but
would require pstrings with two pointers rather than one.)

New declarations for our string programming solution, using these functions,
on next page

Strings: a Programming Example (revised 2022-01-25) 30

let rec find p ps =

if ps_isempty ps

then 0

else if p (ps_head ps) then 0 else 1 + find p (ps_tail ps)

let find_ws ps = find ws ps

let find_nows ps = find (not_ws) ps

let rec string2words ps =

if ps_isempty ps

then []

else string2words1 (ps_drop (find_nows ps) ps)

and string2words1 ps =

if ps_isempty ps

then []

else let n = find_ws ps

in ps_take n s :: string2words (ps_drop n s)

Strings: a Programming Example (revised 2022-01-25) 31

