Currying (what Functions of Several Arguments Really are)

More About Higher-Order Functions

Björn Lisper
School of Innovation, Design, and Engineering
Mälardalen University
bjorn.lisper@mdh.se
http://www.idt.mdh.se/~blr/

More About Higher-Order Functions (revised 2022-02-01)

```
simple x y z means ((simple x) y) z (function application is left
associative)
int -> int -> int -> int means
int -> (int -> (int -> int))
Thus, simple is a function in one argument, returning a function of type
int -> (int -> int)
which returns a function of type
int -> int
which returns an int!
Encoding functions with several arguments like this is called currying (after Haskell B. Curry, early logician)
```

Remember simple?
A function of three variables, we said:
simple : int -> int -> int -> int
let simple x y $z=x *(y+z)$
But in F\#, a function only takes one argument!
What's up?

More About Higher-Order Functions (revised 2022-02-01)

We could have defined:

```
simple : (int * int * int) -> int
let simple (x,y,z) = x* (y + z)
```

Another way to represent a function of three arguments, as a function taking a 3-tuple

But it is not the same function - it has different type!
This version may seem more natural, but the curried form has some advantages

Currying and Syntactical Brevity

What is simple 5?

A function in two variables (say x, y), that returns $5 *(x+y)$
We can use simple 5 in every place where a function of type int -> (int -> int) can be used

A First Example

Recall sum (and all the other functions defined by folds):
let sum $\mathrm{xs}=$ List.fold (+) 0 xs
Same as
let $s u m$ xs $=($ List.fold (+) 0) $x s$
Both sum and List. fold have xs as last argument (and nowhere else)
It can then be "cancelled":
let sum $=$ List.fold (+) 0

Direct Function Declarations

A declaration

let $\mathrm{f} x=\mathrm{g} \mathrm{x}$
where g is an expression (of function type) that does not contain x, can be written
let $\mathrm{f}=\mathrm{g}$
"The function f equals the expression g", not stranger than "scalar" declarations like let pi $=3.154159$

More About Higher-Order Functions (revised 2022-02-01)
5

A Second Example

A function that reverses a list
We first make a "naïve" recursive definition, which is inefficient; then a better recursive definition; then we redo the second definition using higher order functions, and finally we make the declaration as terse as possible
(Solutions on next slide and onwards)

Reverse: First Attempt

Idea: put the first element in the list last, then recursively reverse the rest of the list and put in front. Reverse of the empty list is empty list.

```
let rec reverse l =
    match l with
    | [] -> []
    | x::xs -> reverse xs @ [x]
```

This definition of reverse is correct, but has a performance problem. What problem? (Answer on next slide)

A More Efficient Reverse

We use the "stack the books" principle, with an accumulating argument:

```
let reverse xs =
    let rec rev1 acc xs =
        match xs with
        | [] -> acc
        | x::xs -> rev1 (x::acc) xs
    in rev1 [] xs
```

This definition uses n recursive steps
In each step, the amount of work is constant
Thus, the time to reverse the list is $O(n)$ - big difference to $O\left(n^{2}\right)$ when n grows large!

This definition uses List . append (@) with long first arguments
If the list to reverse has length n, then List. append will be called with first argument of length $n-1, n-2, \ldots, 1$

Time to run List. append is proportional to length of first argument
Thus, the time to run reverse is $O((n-1)+(n-2)+\cdots+1)=O\left(n^{2}\right)$
Grows quadratically with the length of the list!!
Can we do better?
(Yes. . . solution on next slide)

More About Higher-Order Functions (revised 2022-02-01)

Higher-Order reverse

The main operation of the efficient reverse is to put an element in a list, which is accumulated in an argument

Can we define a binary operation and use, say, List. fold to define reverse (or rev1)?

Let's line up their definitions:

```
let revl acc xs =
    match xs with
    with
    | [] -> acc
    | x::xs -> rev1 (x::acc) xs
let rec fold f init l =
    match l with
    | [] -> init
    | x::xs -> fold f (f init x) xs
```

Hmmm, an operation revop such that revop acc $x=x:: \operatorname{acc}$?

Can we proceed to break down the definition into smaller, more genera

 building blocks?Consider revop. It is really just a "cons" (: :), but with switched arguments
A general function that switches (or flips) arguments:

```
flip : (a -> b -> c) -> (b -> a \(->\) c)
```

let flip f $x y=f y x$
(So flip f is a function that performs f but with flipped arguments)

Here's the result:

```
let reverse xs =
```

 let revOp acc \(x=x:: ~ a c c\)
 in List.fold revOp [] xs

Then

let cons x xs $=x:: x s$
let revop acc $x=f l i p$ cons acc x
The declaration of revop can be simplified to
let r evop $=$ flip cons
Finally, replacing revop with flip cons in reverse, we obtain let reverse $=$ List.fold (flip cons) []

Simple? Obfuscated? It's much a matter of training to appreciate this style

Nameless Functions

Functions don't have to be given names
We can write nameless functions through λ-abstraction:
fun x -> e stands for function with formal argument x and function body e
(Comes from λ-calculus, where we write λ x.e)
Example: fun $\mathrm{x}->\mathrm{x}+1$, an increment-by-one function
List.map (fun $x->x+1$) x s returns list with all elements incremented by one

Nameless functions are often convenient to use with higher-order functions, no need to declare functions that are used only once

Another Syntactical Convenience

```
function
| pattern_1 -> expr_1
| pattern_n -> expr_n
is shorthand for
fun x -> match x with
    | pattern_1 -> expr_1
    pattern_n -> expr_n
```

Convenient when matching directly on function arguments. Used a lot in the book

Some Syntactical Conveniences
fun x y $->$ e shorthand for fun x-> (fun y -> e)
Pattern matching as in ordinary definitions, like fun (x, y) $->\mathrm{x}+\mathrm{y}$
Currying can be defined through λ-abstraction:
simple 5 =fun $\mathrm{x} y$-> simple $5 \mathrm{x} y$
Also note:
let (rec) f $\mathrm{x}=\ldots$.
is precisely the same as
let (rec) $f=f u n x->(. .$.

More About Higher-Order Functions (revised 2022-02-01)

An Example

```
posInts : [int] -> [bool]
posInts xs = let test x = x > 0 in List.map test xs
can be written
posInts xs = List.map (fun x -> x > 0) xs
or even, through "curry-cancelling"
posInts = List.map (fun x -> x > 0)
Concise! Easy to understand? You judge.
```


A Second Example

Remember our file i/o example, turning whitespaces between words to single spaces?
let string_2_words $s=$ string2words $(0, s)$
let $s=$ File.ReadAllText("in.txt")
|> string_2_words
|> words2string
in File.WriteAllText("out.txt",s)
With nameless functions we can avoid some declarations:
File.ReadAllText("in.txt")
|> (fun s -> string2words $(0, s)$)
|> words2string
|> (fun s -> File.WriteAllText("out.txt",s))

Function Composition

A well-known operation in mathematics, there defined thus:

$$
(f \circ g)(x)=g(f(x)), \quad \text { for all } x
$$

F\# definition:
(>>) : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c
let $(\gg) f \mathrm{~g} x=\mathrm{g}$ ($\mathrm{f} x$)
Similar to the "forward pipe" operator $\mid>$: we have
$\mathrm{x}|>\mathrm{f}|>\mathrm{g}=(\mathrm{f} \gg \mathrm{g}) \mathrm{x}$
Which one to use is often a matter of taste

