
Type Inference, Higher Order Algebra, and

Lambda Calculus

Björn Lisper

School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Type Inference, Higher Order Algebra, and Lambda Calculus (revised 2022-02-18)

The Topics

Type Inference: how to find the possible type(s) of expressions, without
explicit typing

Higher Order Algebra: a number of laws that the higher order functions like

map, fold etc. obey

Lambda Calculus: a formal calculus for functions and how to compute with
them
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Type Inference

We have seen that the F# compiler can find types for expressions, and
declared values:

let rec length l =

match l with

| [] -> 0

| _::xs -> 1 + length xs

length : ’a list -> int

As we have mentioned, the most general type is always found

How can the compiler do this?
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There is an interesting theory behind F#-style type inference

To infer means “to prove”, or “to deduce”

A type system is a logic, whose statements are of form “under some

assumptions A, expression e has type τ ”

Often written “A ⊢ e : τ ”

To infer a type means to prove that a statement like above is true

A type inference algorithm finds a type if it exists: it is thus a proof search
algorithm

Such an algorithm exists for F#’s type system
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Logical Systems

A logical system is given by a set of axioms, and inference rules over a
language of statements

A statement is true in the logic if it can be proved in a finite number of steps

using these rules

Each inference rule has a number of premises and a conclusion

Often written on the form

premise 1 · · · premise n

conclusion
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Logical Systems

An example of an inference rule (modus ponens in propositional logic):

P P =⇒ Q

Q
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Hindley-Milner’s Type System

F#’s type system extends a simpler type system known as Hindley-Milner’s

type system (HM)

This system was first invented around 1970

The typing statements have the form A ⊢ e : τ , where A is a set of typings
for variables, e is an expression, and τ is a type

Example: {x : α, f : α → β} ⊢ f x : β

The type system of F# is basically the HM type system, with some

extensions
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Hindley-Milner Inference Rules

A selection of rules from the HM inference system:

A ∪ {x : τ} ⊢ x : τ [VAR]

A ∪ {x : σ} ⊢ e : τ
A ⊢ λx.e : σ → τ

[ABS]

A ⊢ e : σ → τ A ⊢ e′ : σ
A ⊢ e e′ : τ

[APP ]

A ⊢ e : ∀α.τ
A ⊢ e : τ [σ/α]

[SPEC]

(You don’t need to learn this: I’m showing it only to let you know what an
inference system might look like)
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Inference Algorithm

There is a classical algorithm for type inference in the HM system

Called algorithm W

Basically a systematic and efficient way to infer types

The algorithm uses unification, which is basically a symbolic method to solve

equations

It has been proved that algorithm W always yields a most general type for
any typable expression

“Most general” means that any other possible type for the expression can be

obtained from the most general type by instantiating its type variables
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A Type Inference Example

Define

let rec length l =

match l with

| [] -> 0

| x::xs -> 1 + length xs

Derive the most general type for length!

See next eight slides for how to do it . . .
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Type inference can be seen as equation solving: every declaration gives rise

to a number of “type equations” constraining the types for the identifiers

These equations can be solved to find the types

For a declaration we basically do this:

• Find a typing for the left-hand side (LHS), using the typing rules

• Same for the RHS

• Ensure that LHS and RHS have the same type

If we succeed, then we have found a typing for the declared entity. If not,
then there is a type error somewhere
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Setting up the Equations (I)

In our example, we already know:

0, 1 : int

(+) : ’n -> ’n -> ’n, ’n some numerical type

[] : ’a list

(::) : ’b -> ’b list -> ’b list

Note the different type variable names, to make sure the types are
independent

These typings will stay as they are throughout the inference process
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Setting up the Equations (II)

We give the identifiers the following initial types:

length : ’c

l : ’d

x : ’e

xs : ’f

Each identifier is given a totally independent type. As the type inference
proceeds, their types will become more and more constrained in order to

fulfil the typing rules

When we’re done, the typing of length can be read off the table
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Typing the Left-hand Side

LHS:

length l = ...

length must have a function type, whose argument type is the type of l.

Thus

’c = ’d -> ’g

where ’g is a new type variable. We also obtain

length l : ’g

So the type of the LHS is ’g
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Typing the Right-hand Side

The RHS is a match expression

They have the following typing rules:

• The matched expression, and all the patterns, must have the same type

• The results must all have the same type

• The type of the match expression is the type of the results

We check these rules next
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Typing the Matched Expression, and the Patterns

First we check that the pattern x::xs is well-typed. This requires:

’e = ’b, ’f = ’b list

With these typings we obtain

x::xs : ’b list

Now l, [], x::xs should have the same type. This implies

’d = ’a list = ’b list

(which requires that ’a = ’b). Since length : ’d -> ’g, we now have

length : ’b list -> ’g
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Typing the Results, and the Right-hand Side

0, and 1 + length xs should have the same type, which then becomes
the type of the RHS

We have 0 : int

What about 1 + length xs? We have xs : ’b list, so length xs is

well-typed with type ’g. Thus, 1 + length xs is well-typed if:

’g = ’n, ’n = int

This implies

length : ’b list -> int

We also obtain that LHS and RHS both have type int. We’re done!
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Most General Type

The type inferred for length is its most general type

This is since we were careful not to make any stronger assumptions than
necessary about any types in each step of the inference
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Another Type Inference Exercise

Find the most general type for int_halve, defined by:

let rec int_halve a l u =

if u = l+1 || a.[l] = 0.0 || a.[u] = 0.0 then (l,u)

else let h = (l+u)/2 in

if a.[h] > 0 then int_halve a l h

else int_halve a h u
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Higher Order Algebra

Higher order functions like map, fold, >>, . . . obey certain laws

These laws an be compared to laws for aritmetical operators, like

x+ (y + z) = (x+ y) + z

They can be used to transform programs, e.g., optimizing them

They also help understanding the functions better
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Some Laws involving List.map

map id = id, where id = fun x -> x (the identity function)

map (g >> f) = map g >> map f

map f >> tail = tail >> map f

map f >> reverse = reverse >> map f

map f (xs @ ys) = map f xs @ map f ys

(Writing map, etc. for List.map, etc.)
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Some Laws involving List.filter

filter p >> reverse = reverse >> filter p

filter p (xs @ ys) = filter p xs @ filter p ys

map f >> filter p = filter (f >> p) >> map f
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A Property of Fold

If op is associative and if e is left and right unit element for op, then, for all
lists xs:

foldBack op xs e = fold op e xs
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What Can Laws Like This Be Used For?

A simple example: rewriting to optimize code

reverse >> filter p >> map f >> reverse =

filter p >> reverse >> map f >> reverse =

filter p >> map f >> reverse >> reverse =

filter p >> map f >> id =

filter p >> map f

since obviously

reverse >> reverse = id
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How to Prove the Laws

Mathematical laws need mathematical proofs

How can the laws for higher-order functions be proved?

We’ll exemplify with the law

map f (xs @ ys) = map f xs @ map f ys

• First, informal reasoning (to motivate why the law holds)

• Then, a formal proof using induction over lists

Type Inference, Higher Order Algebra, and Lambda Calculus (revised 2022-02-18) 24

An Informal Proof

Let xs = [x1, . . . , xm], ys = [y1, . . . , yn]

Then

map f ([x1, . . . , xm] @ [y1, . . . , yn]) = map f ([x1, . . . , xm, y1, . . . , yn])

= [f x1, . . . , f xm, f y1, . . . , f yn]

= [f x1, . . . , f xm] @ [f y1, . . . , f yn]

= map f [x1, . . . , xm] @

map f [y1, . . . , yn]

That is,
map f (xs @ ys) = map f xs @ map f ys

Q.E.D.
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An Formal Proof

If you really want to be sure . . .

A proof by induction

The proof will be over the structure of lists

It will use the recursive definitions of @ and map
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Proof by Induction

Have you ever performed proofs by induction? (You should have. . .)

They prove properties that hold for all non-negative integers

For instance, ∀n.
∑n

i=0 i = n(n+ 1)/2

Exercise: prove this property by induction!

But first, let’s check out next slide . . .
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The Induction Principle for Natural Numbers

Goal: show that the property P is true for all natural numbers (whole
numbers ≥ 0)

Proof by induction goes like this:

1. Show that P holds for 0 (the base case)

2. Show, for all natural numbers n, that if P holds for n then P holds also for
n+ 1 (the induction step)

3. Conclude that P holds for all n

To prove 2 one typically assumes that P (n) is true (the induction
hypothesis), then shows that P (n+ 1) follows
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Why does Induction over the Natural Numbers Work?

The set of natural numbers N is an inductively defined set

N is defined as follows:

• 0 ∈ N

• ∀x.x ∈ N =⇒ s(x) ∈ N (the successor of x, i.e., x+ 1)

0 → s(0) → s(s(0)) → s(s(s(0))) → · · ·
0 1 2 3 · · ·

Proofs by induction follow the structure of the inductively defined set!
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The Inductively Defined Set of Lists

Inductively defined sets are typically sets of infinitely many finite objects

The set ’a list of (finite) lists with elements of type ’a:

1. [] ∈ ’a list

2. x ∈ ’a ∧ xs ∈ ’a list =⇒ x::xs ∈ ’a list

Note similarity with the set of natural numbers!

Also cf. the following type declaration (in “pseudo”-F#):

type ’a list = [] | (::) of ’a * ’a list
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An Induction Principle for Lists

Proof by induction for (finite) lists goes like this:

1. Show that P holds for []

2. Show, for all finite lists xs ∈ ’a list and all possible list elements

x ∈ ’a, that if P holds for xs then P holds also for x::xs

3. Conclude that P holds for all finite lists in ’a list
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The Formal Proof

Now let’s formally prove our equality

Prove that, for all xs, ys, f holds that:

map f (xs @ ys) = map f xs @ map f ys

What induction hypothesis to use? This is often the tricky question!

General rule: look at the function definitions, and try to formulate the
induction hypothesis so it matches the recursive structure!
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Function Definitions

From the definitions of (@) and map we obtain:

[] @ ys = ys

(x :: xs) @ ys = x :: (xs @ ys)

map f [] = []

map f (x::xs) = f x :: map f xs

(“Mathematical” case-by-case versions of the function definitions)

@ recurses over its first argument (xs in the statement to prove)

Thus, let’s do the induction over xs
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Induction Hypothesis

This is then our induction hypothesis:

P (xs) = map f (xs @ ys) = map f xs @ map f ys

If we can prove ∀xs.P (xs), then we have proved that the law holds!

We will now prove the following:

1. P ([ ]) (base case)

2. ∀x.∀xs.[P (xs) =⇒ P (x::xs)] (induction step)

By the induction principle for lists, this will prove ∀xs.P (xs)
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Base Case

P ([ ]) = map f ([ ] @ ys) = map f [ ] @ map f ys

Assume any ys, f

Let’s show that the LHS equals the RHS:

LHS = map f ([ ] @ ys)
= map f ys

RHS = map f [ ] @ map f ys

= [ ] @ map f ys

= map f ys

Thus LHS = RHS, and P ([ ]) holds
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Induction step

We want to prove

P (x::xs) = map f ((x :: xs) @ ys) = map f (x :: xs) @ map f ys

We are allowed to use P (xs) in the proof. Assume any ys, f. Then,

LHS = map f ((x :: xs) @ ys)
= map f (x :: (xs @ ys))
= f x :: map f (xs @ ys))
= (induction hypothesis)

= f x :: (map f xs @ map f ys)
= (f x :: map f xs) @ map f ys

= map f (x :: xs) @ map f ys

= RHS
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Conclusion

We showed the base case P ([ ]), and the induction step
P (xs) =⇒ P (x::xs)

We can thus conclude that ∀xs.P (xs)

That is, the law holds
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Bird-Meertens Formalism

The identities shown belong to an algebra of list functions

This is known as the Bird-Meertens Formalism

The idea of Bird and Meertens was to do program development by:

• making a specification of the program, using the list primitives, and

• using the identities to transform the specification into an efficient

implementation

This attempt has not been overly successful in general, but I think there are

niches where the method can be applied

In particular, it has been proposed for programming of parallel computers
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Lambda Calculus

Formal calculus

Invented by logicians around 1930 (Curry, Schönfinkel, and
others)

Formal syntax for functions, and function application

Gives a certain “computational” meaning to function
application

Theorems about reduction order (which possible
subcomputation to execute first)

This is related to call-by-value/call-by-need

Several variations of the calculus

H. B. Curry

M. Schönfinkel
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The Simple Untyped Lambda Calculus

The calculus consists of a language, and equivalences on expressions in the

language. A term in the language is:

• a variable x,

• a lambda-abstraction λx.e, or

• an application e1 e2

Some examples:

x x y x x λx.(x y) (λx.x) y λx.(λy.(λx.x))

Any term can be applied to any term, no concept of (function) types
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Syntax

Function application binds strongest: λx.e1 e2 = λx.(e1 e2) 6= (λx.e1) e2

Function application is left associative: e1 e2 e3 = (e1 e2) e3
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Lambda Calculus Syntax and Functional Programming

Syntax elements from the lambda calculus have been adopted by higher
order functional languages, in particular:

• Function expressions (fun x -> e), from λx.e

• Function application syntax, and currying: f e1 e2
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Untyped Lambda Calculus with Constants

We can extend the syntax with constants, for instance:

1, 17, +, [ ], ::

We can then form terms closer to usual functional languages, like

17 + x λx.(x+ y) λl.λx.(l :: x)

Functional language compilers often first translate into an intermediate form,
which essentially is a lambda calculus with constants
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Equivalences

Some lambda-expressions are considered equivalent (e1 ≡ e2)

Rule 1: change of name of bound variable gives an equivalent expression
(alpha-conversion)

So λx.(x x) ≡ λy.(y y)

Quite natural, right? If we change the name of the formal parameter, the

function should still be the same

Example: in F#, fun x -> x and fun y -> y define the same function

Type Inference, Higher Order Algebra, and Lambda Calculus (revised 2022-02-18) 44

Variable Capture

However, beware of variable capture:

λx.λy.x 6≡ λy.λy.y

Renaming must avoid name clashes with locally bound variables

Precisely the same problem appears in programming languages:

let f x = let g y = x + y in ...

Here we cannot change x into y without precautions. However, OK if we
rename y in g to z first:

let f x = let g z = x + z in ... =>

let f y = let g z = y + z in ...

Same trick is used in lambda calculus: λx.λy.x ≡ λx.λz.x ≡ λy.λz.y
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Beta-reduction

A lambda abstraction applied to an expression can be beta-reduced :

(λx.x+ x) 9 →β 9 + 9

Beta-reduction means substitute actual argument for symbolic parameter in
function body

A formal model for what happens when a function is applied to an argument

Works also with symbolic arguments:

(λx.x+ x) (λx.y z) →β (λx.y z) + (λx.y z)

Like inlining done by optimizing compilers
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Variable Capture

However, again beware of variable capture:

(λx.λy.(x+ y)) y 6→β λy.(y + y)

The fix is to first rename the bound variable y:

(λx.λy.(x+ y)) y ≡ (λx.λz.(x+ z)) y →β λz.(y + z)
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The same thing can happen when inlining functions. Example:

let f x = let g y = x + y in ...

let h y = f (y + 3)

If we want to inline the call to f in h, then g’s argument must first be

renamed:

...let g z = x + z in ...

let h y = f (y + 3) =>

let h y = let g z = (y + 3) + z in ...
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Some Encodings

Many mathematical concepts can be encoded in the (untyped)

lambda-calculus

That is, they can be translated into the calculus

For instance, we can encode the boolean constants, and a conditional
(functional if-then-else):

TRUE = λx.λy.x

FALSE = λx.λy.y

COND = λp.λq.λr.(p q r)

Exercise: make these encodings in F#!

Type Inference, Higher Order Algebra, and Lambda Calculus (revised 2022-02-18) 49

An example of how COND works:

COND TRUE A B →β (λp.λq.λr.(p q r)) (λx.λy.x) A B

→β (λq.λr.((λx.λy.x) q r)) A B

→β (λr.((λx.λy.x) A r)) B

→β (λx.λy.x) A B

→β λy.A B

→β A

Try evaluating COND FALSE A B yourself!
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Boolean connectives (and, or) can also be encoded

As well as lists, integers, . . . Even recursion can be encoded as a lambda

expression

Actually anything you can do in a functional language!

This means that any functional program can be translated into the lambda
calculus

Thus, lambda calculus serves as a general model for functional languages
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Nontermination

Consider this expression:

(λx.x x) (λx.x x)

What if we beta-reduce it?

(λx.x x) (λx.x x) →β (λx.x x) (λx.x x)

Whoa, we got back the same! Scary . . .

Clearly, we can reduce ad infinitum

The lambda-calculus thus contains nonterminating reductions
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Reduction Strategies

Any application of a lambda-abstraction in an expression can be
beta-reduced

Each such position is called a redex

An expression can contain several redexes

Can you find all redexes in this expression?

(λx.((λy.y) x)) ((λy.y) x)

Try reduce them in different orders!
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Does the order of reducing redexes matter?

Well, yes and no:

Theorem: if two different reduction orders of the same expression end in

expressions that cannot be further reduced, then these expressions must be
the same

However, we can have potentially infinite reductions:

(λx.y) ((λx.x x) (λx.x x))

Reducing the “outermost” redex yields y

But the innermost redex can be reduced infinitely many times –
nontermination!

So the order does matter, as regards termination anyway!
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Normal Order Reduction

There is something called “normal order reduction” in the lambda calculus

It is a strategy to select which redex to reduce next

Normal order reduction corresponds to lazy evaluation, or call by need

Theorem: if there is a reduction order that terminates, then normal order
reduction terminates

For functional languages, this means that lazy evaluation always is the “best”

in the sense that it terminates whenever the program terminates with some
other reduction strategy, like call by value
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