Chapter 11: Proof by Induction

Björn Lisper
Dept. of Computer Science and Engineering
Mälardalen University

bjorn.lisper@mdh.se
http://www.idt.mdh.se/~blr/

August 17, 2007
Induction

Have you ever performed proofs by induction? (You should have . . .)

Then you know induction proofs are to prove properties that hold for all non-negative integers.

For instance, \(\forall n. \sum_{i=1}^{n} i = n(n + 1)/2 \)

Exercise: prove this property by induction!
Proofs by Induction for Properties of Natural Numbers

Goal: show that the property P is true for all natural numbers (whole numbers ≥ 0)

Proof by induction goes like this:

1. Show that P holds for 0
2. Show, for all natural numbers n, that if P holds for n then P holds also for $n + 1$
3. Conclude that P holds for all n

Formulated in formal logic:

$$[P(0) \land \forall n. P(n) \implies P(n + 1)] \implies \forall n. P(n)$$
Why does Induction over the Natural Numbers Work?

The set of natural numbers \(\mathbb{N} \) is an *inductively defined set*

(A variation of) Peano’s axiom:

- \(0 \in \mathbb{N} \)
- \(\forall x.x \in \mathbb{N} \implies s(x) \in \mathbb{N} \)
- \(\forall x.0 \neq s(x) \)
- \(\forall x, y.x \neq y \implies s(x) \neq s(y) \)

\(s(x) \) “successor” to \(x \), or \(x + 1 \)

\[
\begin{align*}
0 & \rightarrow s(0) \rightarrow s(s(0)) \rightarrow s(s(s(0))) \rightarrow \cdots \\
0 & \quad 1 \quad 2 \quad 3 \quad \cdots
\end{align*}
\]

Proofs by induction follow the structure of the inductively defined set!
The Inductively Defined Set of Lists

Inductively defined sets are typically sets of \textit{infinitely} many \textit{finite} objects

The set \([a]\) of (finite) lists with elements of type \(a\):

- \([\] \in [a]\)

- \(x \in a \land xs \in [a] \implies x:xs \in [a]\)

Note similarity with the set of natural numbers!
An Induction Principle for Lists

Proof by induction for finite lists goes like this:

1. Show that P holds for $[]$

2. Show, for all finite lists $xs \in [a]$ and all possible list elements $x \in a$, that if P holds for xs then P holds also for $x:xs$

3. Conclude that P holds for all finite lists in $[a]$

Formulated in formal logic:

$$[P([],) \land \forall x \in a, xs \in [a].P(xs) \rightarrow P(x:xs)] \rightarrow \forall xs \in [a].P(xs)$$
Note: a proof by induction holds *only* for finite lists

_Not* for infinite lists, or the divergent list (⊥)

But very often this is good enough!

At least, it is better than not knowing anything . . . :-)
A Simple Example of Induction Over Lists

Prove that $\text{length} \ (xs \ ++ \ ys) = \text{length} \ xs + \text{length} \ ys$ for all finite lists xs, ys

What induction hypothesis?

General rule: look at the function definitions and try to formulate the induction hypothesis so it matches the recursive structure!
Definitions of `length` and `++`:

\[
\begin{align*}
\text{length } \text{[]} &= 0 \\
\text{length } (x:xs) &= 1 + \text{length } xs
\end{align*}
\]

\[
\begin{align*}
\text{[]} ++ ys &= ys \\
(x:xs) ++ ys &= x:(xs ++ ys)
\end{align*}
\]

Now formulate induction hypotheses and prove the result!

Can we extend the proof to infinite lists?
A Number of Interesting Properties

Some properties of \texttt{map}:

\texttt{map id = id, where id = \lambda x \rightarrow x}

\texttt{map (f \cdot g) = map f \cdot map g}

\texttt{map f \cdot tail = tail \cdot map f}

\texttt{map f \cdot reverse = reverse \cdot map f}

\texttt{map f (xs ++ ys) = map f xs ++ map f ys}

(More properties in book, p. 138)
Another Proof by Induction

Let us prove $\text{map} \ (f \ . \ g) = \text{map} \ f \ . \ \text{map} \ g$!

(Proof on wyteboard)
A property of \texttt{fold}:

if \texttt{op} is associative and if \texttt{e} is left and right unit element for \texttt{op}, then, for all finite \texttt{xs}:

\[
\texttt{foldr \ op \ e \ xs} = \texttt{foldl \ op \ e \ xs}
\]

One can use properties of this kind to develop programs by \textit{program transformations}

There is something called the \textit{Bird-Meertens formalism}, which is a theory for functions over lists with many theorems like this
Let us prove a slightly simpler property:

That \(\text{sum \ } xs = \text{sum1 \ } xs \) for all finite lists \(xs \), where:

\[
\begin{align*}
\text{sum \ } [] &= 0 \\
\text{sum \ } (x:xs) &= x + \text{sum \ } xs \\
\text{sum1 \ } xs &= \text{sum2 \ } 0 \ \text{xs} \\
\text{sum2 \ } a \ [{}] &= a \\
\text{sum2 \ } a \ (x:xs) &= \text{sum2 \ } (a+x) \ \text{xs}
\end{align*}
\]
Do you see how to generalize the proof to prove the property of foldl and foldr on the previous page?
Induction over Trees

Trees are also inductively defined, e.g., the tree data type in Ch. 7:

\[
\text{data Tree } a = \text{Leaf } a \mid \text{Branch } (\text{Tree } a) \ (\text{Tree } a)
\]

Corresponding, inductively defined set of finite trees:

• for any \(x \in a \), \(\text{Leaf } x \in \text{Tree } a \)

• \(t_1, t_2 \in \text{Tree } a \implies \text{Branch } t_1 \ t_2 \in \text{Tree } a \)
Induction Principle for Trees

1. Show, for any $x \in a$, that P holds for Leaf x

2. Show, for any two finite trees $t_1, t_2 \in [a]$, that if P holds for t_1 and t_2, then P holds also for Branch $t_1 \ t_2$

3. Conclude that P holds for all finite trees in Tree a
A Proof by Induction over Trees

Show that $\text{length } (\text{fringe } t) = \text{treeSize } t$ for all finite trees t, where

\begin{align*}
\text{fringe } (\text{Leaf } x) &= [x] \\
\text{fringe } (\text{Branch } t1 \ t2) &= \text{fringe } t1 \ +\ + \ \text{fringe } t2 \\
\text{treeSize } (\text{Leaf } x) &= 1 \\
\text{treeSize } (\text{Branch } t1 \ t2) &= \text{treeSize } t1 \ + \ \text{treeSize } t2
\end{align*}
Strictness

A function f is \textit{strict} if $f \perp = \perp$

Let

\begin{align*}
 f \, x &= 17 \\
 g \, x &= x + 1
\end{align*}

In Haskell, is f strict? g?

\textbf{Theorem:} \textit{in a language with call-by-value, all user-defined functions are strict}

In a language with lazy evaluation, some user-defined functions can be non-strict
Strictness depends on whether the argument is needed or not

Example: consider definition of $\&\&$ from Standard Prelude:

$$\text{True} \&\& x = x$$
$$\text{False} \&\& _ = \text{False}$$

The first argument *must* be evaluated to find out whether it is True, thus $\&\&$ is strict in its first argument.

But there are cases where the second argument is not needed, thus $\&\&$ is not strict in its second argument.
Some properties hold only for strict functions:

Theorem: If f is strict, then

$$f \ (\text{if } b \ \text{then } x \ \text{else } y) = \text{if } b \ \text{then } f \ x \ \text{else } f \ y$$

Can you prove the theorem?
A strict function in a lazy language can be evaluated with call-by-value!

This is interesting, since call-by-value often is more efficient than lazy evaluation

Strictness analysis is a program analysis that sometimes can detect if a function is strict

Good compilers for lazy languages have strictness analyzers

Is the following function strict or not?

\[
f(x) = \begin{cases} 0 & \text{if } x = 0 \\ x + f(x-1) & \text{else} \end{cases}
\]