Component-based Development
Process and Component Lifecycle

Ivica Crnkovic
Mälardalen University,
Department of Computer Engineering
Sweden
ivica.crnkovic@mdh.se
http://www.idt.mdh.se/~icc
Software Development processes

• What determines which development process model to use?
 – Type of products/products (requirements from customers)
 – Type of project
 – Availability & requirements of stakeholders
 – Type of organization
 – Technology used
 –
Software development process adaptation

- Software development processes are usually of generic type
 - Usually requires adaptations
 - Often a software development process is a combination of several models

- There is difference between theory and practice
 - Practice is often more complex
 - Practice is not perfect
Lifecycle Process Models for products

Concept → Development → Production → Utilization → Retirement

Generic Product Lifecycle
Lifecycle Process Models for software products
Component-based approach
process characteristics

• Separation of the development process.
 – The development processes of component-based systems
 – development processes of the components.

• A new process: Component Assessment.
 – Finding and evaluating the components.

• Changes in the activities in the development processes.
 – system-level process the emphasis will be on finding the proper
 components and verifying them,
 – component-level process, design for reuse will be the main
 concern.
requirements

design

implementation

selection of existing components

integration

test

release

maintenance
A simplified and an idealized process

• Assumption of the model
 – components selected and used are sufficiently close to the units identified in the design process

• Further, the figure shows only the process related to the system development – not to the supporting processes
CB System Development
The complete process

- Requirements
- Design
- Implementation
- Integration
- Test
- Release
- Maintenance
- Find
- Select
- Verify
- Store

System Development

Component Assessment

Component Development
System Requirements Phase

Collect requirements

Analyse requirements

Specify/ refine requirements

Are there components that fulfill requirements?

Component A
System and Analysis & Design Phase

- System analysis
- Conceptual design
- Detailed design
- Architectural components
- Existing components
Different architecture view in different phases

• Phase I
 – System architecture - Decomposition of the system
System Design – Phase 2

- Implementation Architecture - Component Identification
System Design – Phase 3

- Deployment architecture

[Diagram showing a server with connections to ComA, SysX, ComB, ComC, and DataServer]
System Implementation Phase

- Implementation
 - Selection of existing components
 - Implementation of new components
 - Glue-coding

- Adaptation

- Parameterized Interface
 - Wrappers
 - Adapters
• **Parameterized Interface.** Parameterized interface makes it possible to change the component properties by specifying parameters that are the parts of the component interface.

• **Wrapper.** A wrapper is a special type of a glue-code that encapsulates a component and provides a new interface that either restrict or extend the original interface, or to add or ensure particular properties.

• **Adapter.** An adapter is a glue code that modifies (‘adapts’) the component interface to make it compatible with the interface of another component.
System Integration Process

• Putting components together
• Integration components into the system (component) framework
• Integration can happen in different phase of product’s lifecycle
Integration in different phases

Assembly – architectural components
Integration of components (for testing feasibility)

System building from all components
Assembly time (link)

Dynamic updating of components
Run-time
Test Phase

• System is being verified against the system specification
• In the waterfall model the test is performed after the system integrations,
• In CBD
 – Tests performed for isolated components
 – Tests of assemblies
 – Test of the system
• Tests are present in all phases!
Integration and test in different phases of the CBD process

- Requirements
- Design
 - Selection of the component candidates
 - Components Integration
 - Components and Assemblies test
 - Components and Assemblies test
- Implementation
 - Selection
 - Adaptation
 - Implementation of new components
 - Glue-coding
 - Components Integration
 - Components and Assemblies test
- Integration
 - Test
 - Release
 - Maintenance
 - Selection
 - Adaptation
 - Component updates
 - Components maintenance
Release Phase

- packaging of the software in forms suitable for delivery and installation.
- The CBD release phase is not significantly different from a “classical” integration.
System Maintenance Phase

• The approach of CBD is to provide maintenance by replacing old components by new components or my adding new components into the systems.

• The paradigm of the maintenance process is similar to this for the development:
 – Find a proper component, test it, adopt it if necessary, and integrate it into the system
Component assessment process

- Requirements
- Design
- Implementation
- Integration
- Test
- Release
- Maintenance

Component Development

System Development

Component Assessment

- Find
- Select
- Verify
- Store
Component assessment process

• CBD characteristics
 – Instead of developing find the components!

• Activates:
 – Find components (often a set of components must be found) that
 – Verify that the component(s) indeed provide the desired (or almost desired) functionality,
 – Verify that the components can successfully be integrated with other components.
 – (The consequence can be that not the best components can be selected, but the components that fit together).
A generic assessment process activities

- **Find** – From an “infinite” component space find the components that might provide the required functionality.

- **Select** – Between the components candidates found, select a component that is most suitable for given requirements and constraints.

- **Verify** –
 - Test functional and certain extra-functional properties of a component in isolation.
 - Test the component in combination with other components integrated in an assembly.

- **Store** –
 - store the selected components in a component repository.
 - Store additional specification (metadata)
 - measured results of component performance,
 - known problems,
 - the tests and tests results and similar
A assessment process activities

• Activities
 – Find
 – Select
 – Verify
 – Store

• The concrete activities dependent of type of component-based development process
 – Architecture-driven component development
 – Product-line development
 – COTS-based development.
Component development process - specifics

- Components are built as reusable units
- Components are built for future systems
- Consequences
 - There is greater difficulty in managing requirements;
 - Greater efforts are needed to develop reusable units;
 - Greater efforts are needed for providing component specifications and additional material that help developers/consumers of the components.
• There is greater difficulty in managing requirements;
• Greater efforts are needed to develop reusable units;
• Greater efforts are needed for providing component specifications and additional material that help developers/consumers of the components.
Requirements Phase

• A combination of a top-down and bottom-up process.
 – The requirements elicitation should be the result of the requirements specification on the system level.
 – Requirements for general types of functions/services
 – Reusability should be addressed explicitly.
Different architectural approaches in CBD

- Architecture-driven component development
- Product-line development
- COTS-based development
Architect-driven component development

• Top-down approach
 – components are identified as architectural elements and as a means to achieve a good design.
 – Components are not primary developed for reuse,
 – Component-based technologies are used, because of easier implementations, in getting already existing serviced provide from the component technology.
 – the main characteristic of these components is composability,
 – No emphasis on while reusability
 – No emphasis time-to-market issues
Architect-driven component development

– The parallel development processes are reduced to two semi-parallel processes
A product line is:

* From Rob Van Ommering/Philips
Product-line development

- GOAL
 - to enable efficient development of many variants of product, or family of products
 - to achieve a large commercial diversity (i.e. producing many variants and many models of products) with a minimal technical diversity at minimal costs [COPA].
 - They are heavily architecture-driven, as the architectural solution should provide the most important characteristics of the systems.
 - component-based approach enables reuse of components, and efficient integration process.
 - composability, reusability and time-to-market are equally important.
 - characteristic:
 - The component model must comply with the pre-defined reference architecture.
 - parallelism of component development process and product development process
Product-line development

System Development

Component Development

Requirements

Design

Implementation

Integration

Test

Release

Maintenance

Select

Verify

Store

Component Assessment
COTS-based development

• COTS - commercial off the shelf
• component development process completely separately developed from system development.

• The strongest concern
 – time-to-market from the component user point of view,
 – reusability from the component developer point of view.

• Main characteristics
 – instant value of new functionality
 – Challenges in composability
 • Often COTS components don’t comply with a component model,
 • the semantics of the components are not specified
 • different properties of the components are not properly and adequately documented.
Case Study

• Philips Consumer Electronics (TV, Video, DVD)
 – Moving from a hardware local development to software & hardware global development
• Requirements
 – New products (product models, variants, etc.) must be delivered each 6 months

Experience

“hardware-like” componentization of software made it possible to make the transformation
The domain...

* From Rob Van Ommering/Philips
(1) Complexity

Code Size Evolution of High End TV Software

Year of Market Introduction

Kbytes

* From Rob Van Ommering/Philips
(2) Diversity

- Price
- Image
- Connectivity
- Sound
- Region
- Data Processing
- User Interface

- 100 Hz
- AC3
- Dolby
- Eu
- US
- AP
- Txt
- EPG
- menus
- animation
- 3D
- P50
- 1394

- DTV
- TiVo
- TVCR
- HD
- DVD
- PTV
- FTV
- LCTV
- UTV
- VCR

- Video Output Device

* From Rob Van Ommering/Philips
(3) Lead Time

Was:
• Yearly cycle of product introduction
 – Christmas
 – World championship

Is:
• Decreasing to 6 (or even 3) months
 – Otherwise loose shelf space in shop
Product architecture:

- Operating system
 - Platform – component framework
 - Core components
 - application components
Koala Components

Provided interface

Modules/glue code

Generate c code

Complication and linking

Required interface

* From Rob Van Ommering/Philips
Development development process

Overall architecture development

Platforms

Subsystems development

Components

Product development
CB development requires changes in the organizations!

Overall strategy level

Platform & Project level

System Architect Manager

Project Manager
Project Architect
Test Manager
QA Manager

Subsystem Project Manager
Subsystem Architect
Subsystem Test Manager
QA Subsystem Manager

Designers
Developers
Testers

Product Project Manager
Product Architect
Product Test Manager
QA Subsystem Manager
Product Validation Manager
Integrators
Testers

MÄLARDALENS HÖGSKOLA
Experience from Philips

- The new (CBD) approach did not work with the previous development process model and organization
- A lot of efforts has been put on
 - re-organization
 - Emphasis on early system/components specification
 - Quality assurance
 - Early test and verification of the components
 - Synchronization of the activities
Findings from the case study

- CBD requires specific approach in development process
- Reuse is not only a matter of a good technology but also of the process and organisation
- Many companies introducing CBD are not aware of that
Conclusion

• The main characteristic of component-base development process
 – a separation (and parallelization) of system development from component development.

• Consequence
 – Programming issues (low-level design, coding) are less emphasized
 – verification processes and infrastructural management requires significantly more efforts.
Literature

- Ivica Crnkovic, **Component-based Development Process and Component Lifecycle** (a chapter in a future CBSE book)
ASSIGMENTS

• Write a report (a seminar work) / 15-20 pages.
• Alternatives
 – Component-based approach and agile methods
 – Component/based approach and RUP

 – Components and agent-based development
 (differences and similarities between agents and components)
 – Your own proposal related to your research