Co-evolution of Simulink Models in a Model-Based Product Line

Antonio Cicchetti
Milardalen University
Visteras, Sweden
antonio.cicchetti@mdh.se

Robbert Jongeling
Malardalen University
Visteras, Sweden
robbert.jongeling@mdh.se

ABSTRACT

Co-evolution of metamodels and conforming models is a known
challenge in model-driven engineering. A variation of co-evolution
occurs in model-based software product line engineering, where it
is needed to efficiently co-evolve various products together with
the single common platform from which they are derived. In this
paper, we aim to alleviate manual efforts during this co-evolution
process in an industrial setting where Simulink models are partially
reused across various products. We propose and implement an ap-
proach providing support for the co-evolution of reusable model
fragments. A demonstration on a realistic example model shows
that our approach yields a correct co-evolution result and is feasible
in practice, although practical application challenges remain. Fur-
thermore, we discuss insights from applying the approach within
the studied industrial setting.

CCS CONCEPTS

« Software and its engineering — Software product lines; Soft-
ware evolution; Model-driven software engineering,.

KEYWORDS

Co-evolution, Change propagation, Clone management, Model-
Driven Engineering, Software Product Line Engineering

ACM Reference Format:

Robbert Jongeling, Antonio Cicchetti, Federico Ciccozzi, and Jan Carlson.
2020. Co-evolution of Simulink Models in a Model-Based Product Line. In
ACM/IEEE 23rd International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS °20), October 18-23, 2020, Virtual Event, Canada.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3365438.3410989

1 INTRODUCTION

When Darwin proposed his theory of evolution by natural selec-
tion, he famously concluded that “from (so) simple a beginnings
endless forms most beautiful and most wonderful have been, and
are being evolved [8]” In software engineering today, gradual and
parallel changes are applied to software models with the goal of
spawning variants addressing diverse requirements. The individ-
ual evolution and collective co-evolution of these variants need to
be managed to ensure continued opportunities for reuse. To this
end, software product line engineering (SPLE) proposes to organize

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MODELS °20, October 18-23, 2020, Virtual Event, Canada

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7019-6/20/10...$15.00
https://doi.org/10.1145/3365438.3410989

Federico Ciccozzi
Milardalen University
Visteras, Sweden
federico.ciccozzi@mdh.se

Jan Carlson
Milardalen University
Visteras, Sweden
jan.carlson@mdh.se

development artifacts and their variants in product lines [20]. In
this work, we study an industrial setting with a model-based prod-
uct line where Simulink models are used to design and implement
software components for the development of complex embedded
systems.

Simulink is one of the most-used tools for model-based develop-
ment of embedded systems [13]. It is a MATLAB-based graphical
modeling environment with extensive support for simulations and
code generation. Simulink models are created by defining a data
flow by linking predefined and custom blocks. These blocks can
represent defined functions such as logical operators or arithmetic
operations, but also more complex functions such as integrators
or look-up tables. A special type of block, called subsystem, can,
in turn, contain a set of connected blocks, thereby providing the
possibility of hierarchically organizing models.

In the studied industrial development setting, reuse of (parts of)
models for software components is promoted to reduce the lead
time for their development and maintenance. A known best practice
for managing variants in a product line is through feature models,
which shows the different variants present in the product line and
the points at which the product can vary. Nevertheless, a commonly
observed approach in industrial settings is to skip the creation of a
feature model and instead start by copying assets from an existing
project to reuse them in another project, leading to so-called clone-
and-own product lines [24]. This kind of reuse is commonly used in
industry because it requires no initial investment and it is simple
to start with. Its downside is the lack of systematic reuse, which is
required to fully benefit from the advantages of product lines [11].

In the SPLE paradigm, common functionality is contained in a
platform from which various related products can subsequently
be derived. Different products can thus be branched off from the
platform and further developed to fulfill their unique requirements.
This setup allows for customization of individual products while
benefiting from organized reuse of common functionalities, which
can centrally evolve. Indeed, a platform is expected to be period-
ically revised, for example, to fix bugs, or to include software for
new or changed requirements. Such an evolution in the platform
may need to be propagated to the derived products to keep them
consistent with the platform. In other words, the derived products
may need to co-evolve.

In typical model-driven engineering (MDE) scenarios, co-evolution
refers to the need to update models upon a change to the metamod-
els they conform to. Automation of co-evolution of metamodels
and models may utilize these conformance relationships [6]. This
is one of three relationships typically considered in co-evolution.
The other two are (1) a relation between a model transformation
and a metamodel, and (2) an indirect dependence of a model on
a metamodel [10]. In this paper we consider the need for derived

https://doi.org/10.1145/3365438.3410989
https://doi.org/10.1145/3365438.3410989

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

products to co-evolve, upon an evolution of the platform, to main-
tain the integrity of the product line. In the studied setting, derived
products and platform are all Simulink models.

The setting differs from metamodel-model co-evolution due to
the following three reasons:

(1) the relation between the models is not well-defined (at some
point in the past, the derived product was branched off from
the platform and after that has possibly undergone separate
revisions, as illustrated in Figure 1);

(2) there is no traceability of reuse, so it is not known which
portions of which artifacts should co-evolve; and

(3) derived products are not necessarily co-evolved, the changes
in the platform might not be adopted depending on the re-
quirements for that specific derived product.

In the studied industrial setting, analyses to find re-used model
portions and assessment of the impact of propagating changes be-
tween them are currently performed manually. It is a time-intensive,
difficult, and error-prone task. The choice on whether to propagate
co-evolution changes to a product is based on the nature of the
change, how the product differs from the platform, and on the spe-
cific requirements of the product. Some of the engineers working on
the Simulink models are in charge of making this decision, we refer
to them as domain experts. We aim to provide automated support
for domain experts, at the granularity of reused model fragments,
i.e. a group of connected model elements. This paper contributes an
approach and insights from its application on real models. Further-
more, some of the proposed techniques may contribute to moving
from clone-and-own approaches to product lines

The remainder of this paper studies the evolution of the platform
and how to co-evolve the derived products. Section 2 describes the
context of the work in terms of the studied industrial setting and
describes the studied problem. Our proposed approach is outlined
in Section 3, its implementation and a feasibility study in the form
of its application on a realistic example are presented in Section 4.
Insights from this process as well as the application of the approach
in an industrial setting are discussed in Section 5. Related research
works are listed in Section 6 and the paper is concluded in Section 7.

2 MOTIVATION

2.1 A clone-and-own Software Product Line

The studied setting is a development team at our industrial partner,
responsible for the design, implementation, and testing of control
software for a set of embedded systems. To enhance the opportuni-
ties for reuse of software components and their test cases, the team
has adopted SPLE. Their product line is organized as one platform,
which contains common functionality for products, and several de-
rived products that are branched off from the platform throughout
the revision history and then further developed, as illustrated in
Figure 1. When a new requirement comes in, domain experts decide
whether it is cross-product, and therefore to be implemented in the
platform, or if it is specific to one of the products, and therefore to
be implemented in that specific product only. New revisions of the
platform are released periodically. Upon such a release, the new or
changed functionality in the platform may need to be propagated
to the derived products.

Jongeling et al.

® Revision
» Development

Change
propagation

e

Deri%od /f)roduct C
Q\‘z” Derivéd product B

Derived product A

Figure 1: Organization of product line in a platform and de-
rived products (A, B, C). Upon a new release of the platform,
changes made in the platform since the last revision may
need to be propagated derived products.

Currently, design and implementation of control software are
done by the same team, using model-based development. The de-
veloped products are comprised of software components that are
implemented in Simulink models. Each of these models is associated
with a test harness and test cases. The eventually deployed C code is
automatically generated from these models using Embedded Coder.
Real-time behavior of the generated code is studied in hardware-in-
the-loop tests, which are later followed by tests on lab hardware,
and eventually on the real deployment target. In this use case, we
specifically focus on the development of software components and
their test cases.

It is worth noting that not all typical SPLE practices have been
adopted in the studied setting, for example, there is no feature
model, nor does the development make use of overloaded (150%)
models. Overloaded models are models that contain a combination
of all possible alternatives and from which a particular variant can
be obtained by stripping away the irrelevant elements. Instead, the
studied setting can be characterized as a clone-and-own product
line, in which the platform contains re-usable components that are
copied to the derived products. Typically, a component in a derived
product is a reduced version of that component from the platform,
or it is cloned, i.e., a one-to-one copy. However, in addition to the
reduced and cloned components, derived products can also contain
“new” components that do not exist in the platform and are only
relevant for that specific project. Furthermore, derived products
may contain modifications of platform functionality. Hence, in the
studied setting, the platform is something almost, but not quite,
entirely unlike a 150% model.

Figure 2 shows the four different relationships encountered
between software components in the platform and the derived
products. In this work, we are particularly interested in case 2, in
which components are copied from the platform and then edited
for specific use in a derived product. This case is primarily in-
teresting from the co-evolution perspective since common and
product-specific functionalities can both be present in software
components. Changes to components in the platform might need
to be propagated to the derived products. But it is no longer clear
how those changes should be propagated because the common
portions between platform and products are no longer identical nor
are components in the products trimmed-down versions of those

Co-evolution of Simulink Models in a Model-Based Product Line

in the platform. As mentioned earlier, the absence of a well-defined
relationship between the models complicates the co-evolution pro-
cess, since it cannot rely on e.g. a conformance relation as in the
co-evolution of metamodels and models.

|
I
! |
Platform SwC ! SwC 1 SwC
! |
| ! l New
IClone H
Clone Change i
| i
: : Removed
I
Product SwC |1 |SwCPROJ| | SwC(X)
! |
| I,
Case 1 1 Case 2 | Case 3 Case 4

Figure 2: Encountered cases of relationships between soft-
ware components in the derived products and their counter-
parts in the platform.

2.2 Making Software Changes

The systems under development are safety-critical, which means
that all developed products require certification according to domain-
specific industry safety standards as well as local and national
regulations. Safety assessments are time-intensive and costly. Con-
sequently, a large development effort lies in testing and certifying
the software components. One of the improvements to this process
was the introduction of a software product line because certifica-
tion of products can then be based on existing certifications of the
platform. Within the current development setting, upon an update
to a software component in the platform, a review is needed for
each of the products using that component, to assess if they can
and should be updated as well.

A schematic co-evolution scenario is illustrated in Figure 3. Let
N denote a model of a platform component and N a cloned and
subsequently modified copy of N in a derived product. Now consider
an evolution of the platform where N changes. The evolved model
is denoted as N*. Since Nj is based on N and probably contains
cloned parts of N that are now updated, we may need to co-evolve
the model of the product component too, thereby creating Nj.

Assessing the impact of a change in the platform on the products
requires knowledge of how products are updated after that change.
First, it is checked which products use the updated platform com-
ponent. Then, for each of those products, an expert assesses the
need for updating it (bug fixes are more likely to be propagated to
the products than new functionality). Currently, this assessment
process is completely manual, but given the scale and growth of the
product line, this has become overwhelming, tending to infeasible.
The platform contains about 180 software components, each of
which is implemented as Simulink models and is associated with its
own test harnesses and test cases. The mean number of top-level
blocks in such a model is 40, with a standard deviation of 24. In
the near future, the team will be working on six products derived
from the platform. Given that an experienced engineer can check
approximately one component every ten minutes, a new release
of the platform causes a workload of one month for these reviews
only. Secondly, upon a decision to propagate the changes to the
product, the engineer manually updates the software components

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

in the product. After the changes are incorporated, the product
needs to be retested. Since changes might include new functional-
ity, retesting may also require the development of new test cases or
modifications to existing ones. In some cases, the updated test cases
can be taken directly from the platform, but this cannot be guar-
anteed in a general case, due to the informal relationship between
platform and product described earlier. Although the changes are
performed manually, most effort lies in fact in reviewing the tests to
make sure that they are still relevant and complete after a change to
the software component and, in case they are not, to update them.

The overall goal of our research is to provide means by which
the review process can be reduced and the number of tests needed
when a component is updated can be limited. In our work, we focus
on the first part of the review process, deciding whether platform
changes should be propagated to products or not. The context of
our work is thus the assessment of the impact of changes in the
platform on software components and test cases in the derived
products.

' Platfor

: atform Evolution of platform

: N—» N~ :
: Inspires Propagate :
‘Product ¢ 1l changes?

] —— » Ni
Co-evolution of product

Figure 3: Schematic overview of the relation between plat-
form evolution and product co-evolution.

2.3 Co-evolution in the Product Line

One way of considering the co-evolution problem is by seeing it
as a three-way-merge. In three-way merging, three revisions of
an artifact are merged into one. This is commonly used to version
development artifacts that are collaboratively developed, in cases
where local changes must be merged into an artifact that has in the
meanwhile also been changed by someone else. One of the three
revisions is considered the “base” artifact, from which the others are
derived. These are usually named “theirs”, for the remote revision,
and “mine” for the local revision. In our case, we could consider the
original platform (N) as the “base” model, the evolved platform (N*)
as “theirs”, and the product before co-evolution (N7) as “mine”. A
three-way merge is then expected to yield the co-evolved product
as the “target” (N7).

Three-way merging is a conceptually valid approach of ending
up with the co-evolved product [26]. Note however that this merge
implies that the target contains all changes as made in the platform.
In our scenario, we do not necessarily want to achieve that. Rather,
the engineers should be in control of the co-evolution and choose
which changes should or should not be propagated to the products.
Furthermore, although Simulink contains native support for three-
way merging, we found that in some cases using this support results
in semantically incorrect or irrelevant target models. An example
of this issue is shown in Figure 4, where a base model was altered
into two semantically identical, but syntactically different, ways.
The resulting three-way merge is nonsensical since the input of
each of the two AND gates depends on the output of the other.

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

Typically the expected output from this type of input would be
a merge conflict, which then requires manual resolution, in this
example however, the merge is performed without complaints.

o D

AND

(d) N

Figure 4: Example of a three-way-merge of Simulink models
with a semantically incorrect result without raising merge
conflicts. The arrangement of the four models corresponds
to Figure 3.

Given that we do not always want to propagate all changes, and,
in case of a merge, a manual resolution of merge conflicts may be
required anyway, we might consider a different approach. We hy-
pothesize that instead of merging models at the level of individual
boxes and lines, the level of abstraction can be raised to that of
portions of functionality contained in fragments of models, akin to
the idea of feature-based product line evolution [19], but without
the creation of a feature model. Within this scheme, an expert can
choose to propagate changes to a model fragment encompassing a
certain functionality, when this fragment is reused in different prod-
ucts. Assuming this support on the level of portions of functionality,
it would be easier to create the co-evolved product, automatically
assess the impact of the change, and thus aid in the assessment of
the need for propagating it to multiple derived products.

In conclusion, we study the co-evolution of a platform and the
products derived from the platform. Our primary focus lies in assist-
ing engineers in assessing change propagation at the level of model
fragments rather than low-level blocks, leading to the simplified
creation of the evolved derived product (N7).

3 APPROACH

The approach outlined in this section aids domain experts in co-
evolving derived products upon evolution in the platform, by ac-
cepting or rejecting changes at the level of model fragments. Our
approach is based on the observation that the product line is created
by a “clone-and-own” approach, i.e., products are derived by copy-
ing the platform and then customizing them. Most software compo-
nents in the products are expected to be a trimmed-down version of
the corresponding software components in the platform, although
the customization can also entail additions or modifications. Hence,
the product software components are typically expected to contain
reduced parts of functionality as compared to the platform.

We consider the schematic example models in Figure 5. The
models on the top row (Figures 5a and 5b) represent the platform
before and after evolution. The models in the first column of the two
bottom rows (Figures 5c¢ and 5e) represent two derived products

Jongeling et al.

before co-evolution. Within these figures, the shapes represent
model elements. Hence, the example evolution from N to N* shows
an addition, a deletion, and a modification of a model element.

The overall approach consists of the four steps listed in Table 1.
The last three steps represent a common software engineering
pattern of packing, then doing something on the packed thing, and
then unpacking again. This section further details each step using
schematic example models. Section 4 details the implementation
and feasibility study of our approach on a Simulink model that
provides a realistic! representation of a typical model from the
studied development setting.

Table 1: High-level overview of the steps in our approach,
elaborated throughout Section 3 and exemplified through-
out Section 4.

Step 1 | Detect clones between platform and derived products.
Step 2 | Replace clones with subsystem references.

Step 3 | Evolve the referenced subsystem.

Step 4 | For each reference, revert or expand the subsystem.

()N (b) N*

(N}

(e)N; (F) N

Figure 5: Schematic example of models in a platform (N),
its evolved version (N*), and two derived products before
(N1 and N) and after (N} and N7) co-evolution. Clones be-
tween the platform and derived products are indicated by
the dashed and dotted regions in the models before evolu-
tion (N, N1, and N3).

Step 1. The first step of the approach is to find common func-
tionality shared between product and platform. This step can be
skipped when traceability information tracking reuse already exists
but is needed in our case since no explicit knowledge of reused
functionality is present in the artifacts. In our setting, we expect
the origin of common functionality between different files to be
through copying. Therefore, we start by looking for exact clones

INote that, for obvious reasons related to IP, we could not provide the “real” industrial
model in the paper.

Co-evolution of Simulink Models in a Model-Based Product Line

(a) N; with cloned (b) Library subsys- (c¢) Library subsys-
fragment replaced tem as referenced tem as referenced
by a subsystem by Nj, before evolu- by Nj, after evolu-
reference. tion. tion.

(d) N2 with cloned (e) Library subsys- (f) Library subsys-
fragment replaced tem as referenced tem as referenced

by a subsystem by Nj, before evolu- by N,, after evolu-
reference. tion. tion.

Figure 6: Cloned functionality is replaced with subsystem
references (step 2). Then changes are applied in those refer-
enced subsystems (step 3).

of model portions between platform and products, although dif-
ferences in layout are acceptable as long as they do not change
the semantics. The clones across the three models before evolu-
tion are illustrated by dashed lines in Figure 5, for N, Ny, and N3
in Figures 5a, 5¢c, and 5e respectively. If desired, these results can
be stored for future instances of co-evolution, although it should
be noted that the derived products may evolve individually in the
meantime and in that process break the links that are created in
this step.

Step 2. The second step comprises of “packing” each of the cloned
model fragments in separate subsystems. Crucially, these newly
created subsystems are stored in a common library. In each derived
product containing the cloned model fragment, that fragment is
replaced by a reference to the created subsystem. The results of this
step on the products Nj and N3 are shown in Figures 6a and 6d,
respectively. Figures 6b and 6e show the subsystem as created in
the common library and referenced by Nj and Ny, respectively.

Step 3. Now, in all derived products, the cloned fragments have
been replaced with a reference to the library subsystem containing
that functionality. The third step applies the evolution of the plat-
form to that library subsystem and, by these means, the change is
automatically propagated to all derived products. To perform this
step, we need to know the following four things:

(a) What evolution happened in the platform;

(b) Which cloned fragments are affected;

(c) How we can evolve the library subsystems;

(d) For each subsystem reference, whether the change should
be accepted or discarded.

The first input we require is to know what evolution happened
in the platform between its closest previous release and the current
release. This can be obtained using standard model differencing
provided by version control systems. Although notoriously diffi-
cult for graphical models, Simulink provides effective support for
graphical model differencing. Note that the products, between their

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

derivation from the platform and the new platform release, may
have evolved on their own too. Therefore, when detecting clones,
we consider the latest version of the derived product, rather than
the version at the time of branching off from the platform.

Given an evolution of the platform, we need to determine which
reused fragments are affected. In the schematic diagrams, we simply
draw boxes around cloned fragments (as in Figure 5), providing
clear clone borders. Naturally, this kind of meta-information is not
present in the output of the clone detection step, nor it can be ex-
pected to be part of other traceability mechanisms. Nevertheless, it
is important to assign borders to cloned fragments, since we want
to limit the applied changes in this step to within cloned fragments,
thereby allowing the engineers to adopt the changed fragment as a
whole (as in Figure 6). Moreover, limiting changes to within frag-
ment borders prevents problems when later (in step 4) “unpacking”
the subsystem references again to their constituent blocks. There-
fore, we define clone borders by the components within it, i.e., after
a change, an added component shall be considered to be within the
clone border when it is only connected to components already in
the clone. In case of multiple new components, the same definition
applies recursively. Modified components are considered within
the clone scope if and only if they were in the clone scope before
the evolution. Note that this step might result in cases where the
change cannot be applied completely since it happens across the
boundaries of the cloned fragment. We do not provide support for
these specific cases, which are expected to be very few, given the
nature of the clones in the studied setting.

Once we know which cloned fragments have changed and how
they have changed, we want to apply the corresponding evolution
to the library subsystems. For each clone, we can perform the same
evolution as it happened in the platform, based on the obtained
difference between the current and previous platform releases. Con-
ceptually, this is similar to applying a patch as obtained through a
Git diff: This is challenging in general for graphical models and not
supported in Simulink.

Figures 6¢ and 6f show the situation after the platform changes
are applied to the library subsystems. Note that in this example each
subsystem contains a single change and that one of the changes in
the platform, that falls outside the clone boundaries, is not propa-
gated to any subsystem.

After this step, we can “unpack” the subsystems again and obtain
the co-evolved models. Before doing so, test cases and calculations
of other model metrics can be executed; this can help the engineer
to decide if this change shall be propagated to the product, or if
it shall be discarded and thereby revert to the original subsystem.
This assessment, labeled as step 3d, requires domain knowledge
and is therefore always manual.

Step 4. In step four, we break the references to the common sub-
system, making the subsystems, in each model instance, unique. Fur-
thermore, we replace the subsystems with their content, thus restor-
ing the models to the same structure as before the co-evolution
(but with different contents). Instead of these unpacking actions,
we might consider keeping the now uncovered traceability links
between clones. We opt to unpack the subsystems back to their
constituent blocks to keep allowing the derived products to evolve
independently of the platform too. Figure 5 shows the evolved

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

products N} (Figure 5d) and N, (Figure 5f). Note that, as expected,
changes outside the cloned fragments are not propagated to the
products.

4 FEASIBILITY STUDY

In the first part of this section, we describe the implementation?® of
each of the steps as outlined in Section 3. Individual steps are sup-
ported by fully automated means, except for step 3, which requires
an engineer’s decision. The different steps are implemented as pro-
totypes, we have not yet created automation to combine the steps
into a single executable script. Since the models at our industrial
partner cannot be shared, the second part of this section describes
the application of the implemented approach on a realistic (not real)
model. The third subsection describes experiences from applying
the approach to real industrial models.

4.1 Implementation

Step 1. In the studied setting, no traceability information indi-
cating reuse of model fragments exists. However, due to the “clone-
and-own” nature of the product line, we expected to find exact
clones across models. To detect them, we considered three alter-
natives for clone detection. The first is a built-in Simulink feature
that can detect similar subsystems within the same model. In our
case, we found that the models are quite “flat”, i.e., they typically do
not contain subsystems. Furthermore, we aim to find clones across
different models, not within one single model.

After that, we considered the SIMONE Simulink code cloning
tool [1]. SIMONE can be configured to look for similar subsystems
or similar models. Its strength is the ability to detect near-miss
clones. In this use case, we expect exact clones at block-level, which
is why we eventually opted for the ConQAT [9] tool. ConQAT
is used in several research works that consider Simulink clones,
e.g., to detect anti-patterns [29], or to compare performances of
cloning detection tools [1]. It can find the exact clones of model
fragments across models by considering the Simulink models as
graphs and matching identical sub-graphs. The tool relies on the
textual storage format of Simulink models, so it requires input
models to be saved as .mdl. For practical use, the main challenge
is to configure the correct minimum size of to-be-detected clones
in order to detect meaningful fragments. Through experimenting
on our set of industrial models, we found out that a minimum of 5
blocks yields reasonable results.

Step 2. Step 1 yields cloned model fragments across several mod-
els (the platform and one or more derived products). In step 2,
we want to convert these fragments into references to a com-
mon library subsystem. To do that, we first create a subsystem
out of the cloned fragment. Executing the command Simulink
.BlockDiagram.createSubsystem(handles) creates a subsys-
tem from a list of handles of blocks making up a cloned fragment.
This list is the result of step 1. To be able to be converted to a sub-
system reference, Simulink requires a subsystem to be atomic. This
can be achieved by setting the parameter TreatAsAtomicUnit of

2 All mentioned scripts and models are available in the following GitHub repository:
https://github.com/RobbertJongeling/Simulink-PL-co-evo

3The execution of blocks in the atomic subsystem can not be interleaved with the
execution of blocks outside it.

Jongeling et al.

a subsystem to on. After that, the subsystem can be replaced by a
reference by executing the command
Simulink.SubSystem.convertToModelReference('ModelName
/SubsystemName', 'libref', 'ReplaceSubsystem', true).

Note that after these actions, a single cloned fragment in one of
the models is replaced with a subsystem. However, in cases where
a fragment is cloned across multiple derived products, an extra step
is required to put a subsystem reference in each of them. First, a
subsystem reference is created in each of the target models. In this
scenario, we want to make all the subsystem references to point
to the same library subsystem. This is achieved by changing the
ModelFile parameter of subsystems to point to one library file
containing the common subsystem.

Step 3. After step 2, all clones are replaced by subsystem refer-
ences pointing to the same library subsystem. Consequently, any
changes in that library subsystem during step 3 are automatically
propagated to all models containing a reference to it. Now we need
to apply the evolution that happened in the platform and within
the clone to the subsystem library.

First, we find out what the change implies. In Simulink, the differ-
ence between two models can be obtained using either visdiff (N,
N$~+$), which creates a visual comparison and a report, or through
slxmlcomp.compare(N,N$~*$), which returns the difference in
an xmlcomp.Edits object.

However, the latter is also mostly visual, since the object’s main
purpose is to allow the creation of a comparison report as created by
the former command. Nevertheless, the xmlcomp.Edits object pro-
vides the roots of tree representations of both models and allows a
programmatic traversal of them. This makes it possible to automat-
ically look for all changed (parameter Edited set to true) or new
blocks. The object will contain only those nodes that have changed,
so all common ones that are unchanged are not mentioned. Using
the same traversing technique, we can determine which clones
are affected by the particular evolution in the platform and which
changes are made to them. This is how the calculation of differences
and their localization in code fragments could be implemented in
the Simulink environment. However, Simulink does not provide
features similar to Git, in which differences between files can be
stored into a patch that can later be applied to the original file to ob-
tain the changed one. Therefore, applying the changes is currently
a manual process and consequently, there is not any notable added
value in automating the remaining sub-steps. Upon the decision to
accept the change, we continue with the final step, alternatively,
the changes are discarded and the model is returned to the state
before the changes made in step 2.

Step 4. Step 4 should break the links to the referenced subsys-
tem and unpack the subsystems back to individual model compo-
nents. We adopted a script from the Mathworks forums to break
the link to the library subsystem and make the subsystem in the de-
rived model unique [30]. After that, we converted subsystems back
to their original components through Simulink.BlockDiagram.
expandSubsystem with the subsystem that should be unpacked as
an argument.

https://github.com/RobbertJongeling/Simulink-PL-co-evo

Co-evolution of Simulink Models in a Model-Based Product Line

Intake Airflow Estimation and Closed-Loop Correction

01011

<throtte> -8z

Throttle Transient

Feedforward Control

Oxygen Sensor
Switching Threshold

SId_FuelModes.LOW

Sid_FueModes.RICH

Figure 7: Realistic Simulink model as adapted from one of
the Simulink examples. This model is considered the base
platform model (N) in this Section.

4.2 Demonstration

We illustrate the implementation by applying it to a public Simulink
example model. In selecting the example, we considered models that
are as realistic as possible in the sense that they 1) consider pieces of
control software that could be used to generate code, 2) have a size
and complexity comparable to typical models encountered in the
studied industrial setting, and 3) can have derived products and can
be subject to additions, changes, and deletions of model elements.
We consider as a model the airflow_calc subsystem within the
fuel_rate_control subsystem within the sldemo_fuelsys ex-
ample model [14]. We slightly modified that by changing the condi-
tion for enabling the switch from (O2_normal A fuel_mode = LOW)
to ((O2_normal A fuel_mode = LOW) V (O2_normal A fuel_mode
= HIGH)). The resulting base model (N) is shown in Figure 7.

To show a reasonable example of evolution, we made sure to con-
sider different types of changes, both within and outside a cloned
fragment. The evolution of the model contains three changes com-
pared to the base.

(1) It fixes a bug by adding a negation in the switch condi-
tion, thus making it ((O2_normal A fuel_mode = LOW) V (=
02_normal A fuel_mode = HIGH)).

(2) It refactors two multiplication blocks with 2 inputs each to a
single multiplication block with 3 inputs, in the “Feedforward
Control” part.

(3) It updates the constant value Oxygen Sensor Switching
Threshold from 0.5 to 0.7.

The resulting evolved model (N*) is shown in Figure 8.

We consider one product derivation from the original platform
model. The derived product model is, as typical in our setting,
cloned from the platform model and then modified. Two changes
were made after the cloning step:

(1) Part of the switch condition functionality was stripped, leav-
ing only the original from the sldemo_fuelsys example:
(0O2_normal A fuel_mode = LOW).

(2) The integrator method used by the discrete integrator block
has been changed from Forward Euler to Trapezoidal.

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

Intake Airflow Estimation and Closed-Loop Correction

o101zt
<irotte> 181

Cx 1]

Feedforward Control

SId_FuelModes LOW.

Sid_FuelModes RICH [———————»{ | normal_o peration

Figure 8: Evolved version of N from Figure 7, locations of
changes indicated in cyan. This model is the evolved plat-
form (N*) in this section.

Intake Airflow Estimation and Closed-Loop Correction

<throtte>

est_airow

ssssss Pumping Constant

Feedforward Control

Oxygen Sensor
Switching Threshold

(@D,
02_nommal o

nable_integration
fuel_mode =
sid_FueModes LOW. normal_operation

Figure 9: Model version derived from N from Figure 7. This
model is the derived product (N;) in this section. High-
lighted in red are the blocks that form the fragment of N
that is cloned from N.

Feedback Control

The resulting derived model (N7) is shown in Figure 9.
Now we show the steps of our approach and how they could be
applied to this use case.

Step 1. We ran one of the ConQAT pre-defined configurations
that detect clones between Simulink models: simulink-analysis.cqr.
As input, we used .md1 versions of the original model (N, Figure 7)
and the variant (N1, Figure 9), and we configured a minimum-clone-
size of 5. In this example, a single large cloned fragment is identified
between N and Ny, it is shown in red in Figure 9. Note that the
integration method is a property of the discrete integrator block
and since the clone tooling works on the level of blocks, the two
integrator blocks are marked as clones.

As input for step 2, we require a list of handles of all blocks in
the cloned fragment. ConQAT reports a list of block identifiers in
the form of a Matlab script (.m file) that can be run to obtain the
colorization as shown in Figure 9. It does this by setting, for each

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

Intake Airflow Estimation and Closed-Loop Correction

modelref_lib
1 sensors - est_airflow
sensors] - est_airflow
enable_\ntegrafion ’ : fb_correction
fb_correction
02_normal

Subsystem
enable_integration

Feedforward Control
fuel_mode

sld_FuelModes.LOW

Figure 10: N; being prepared for co-evolution, clone is re-
placed by subsystem reference.

enable_integration

normal_operation

Feedback Control

block in the model, the parameter BackgroundColor. To obtain a list
of handles, we modified this output file to, instead of setting these
parameters, getting the "handle’ parameter for all blocks that are
part of the cloned fragment (which they are when their background
color is set to anything else than white). So we take the generated
simulink-analysis_matlab-colorm-file-writer_Clone_0.m file (and
possibly the other files, if more clones were found), and then we
run the script to get the block handles out.

Step 2. Now we have all the handles of the blocks in the subsys-
tem. At this point we make a subsystem out of all the cloned blocks,
we make it atomic and finally we convert it into a reference:

(1) Simulink.BlockDiagram.createSubsystem(handles);

(2) set_param('intakeAirflow var/Subsystem',

'TreatAsAtomicUnit', 'on');
(3) Simulink.SubSystem.convertToModelReference(
'intakeAirflow_var/Subsystem', 'modelref_lib"',

'ReplaceSubsystem', true)

After applying these steps, model N; contains a reference to the
library subsystem as stored in modelref_11ib. The resulting model
is shown in Figure 10

Step 3. The engineer shall now apply to the library subsystem the
changes that are limited to the clone scope, as defined in Section 3.
Following our rules, the new negation block is not part of the change
to be applied, but the changed parameter and the multiplication
refactoring are. The changes made in the library are immediately
visible also in the variant since it contains a reference to it. Now
that the changes appear in the variant, it is up to the domain expert
to choose whether to accept or discard the changes made by the co-
evolution mechanism. In this example, we assume that the changes
are accepted, to continue with step 4.

Step 4. For breaking the link to the library subsystem, we run
the aforementioned script: Replace_Md1Ref_SubSys (
‘intakeAirflow_var'). As a small note on an implementation
detail, this script copies the model and breaks the link in the copy,
but this is not essential to the functionality and not relevant for our
approach. Now that the link is broken, we can unpack the subsystem
again to its constituent blocks through Simulink.BlockDiagram.
expandSubsystem('intakeAirflow_var_new'). We obtain the
model as shown in Figure 11, which represents N7, the co-evolved
derived product.

Jongeling et al.

Intake Airflow Estimation and Closed-Loop Correction

Subsystem_SS_1

01-01z1

<throtte> 1821

Throttle Transient

D

Feedforward Control

tion
Feedback Control

Sid_FuelModes.LOW

Figure 11: The result of the co-evolution approach: Nj. Note
that the background is there just to clarify the image. It can
be removed by setting the additional option ’CreateArea’ to
’Off” (available from 2019a)

4.3 Experiences

We now describe the outcomes of applying our approach to real
industrial models. We discuss in particular two co-evolution cases
of software components (referred to as case A and case B) that are
particularly interesting because they represent extreme cases in
the described setting. The derived products are large reductions of
the platform (From 80 to 20 in case A and from 74 to 15 top-level
blocks in case B) and contain some changes.

Step 1. In case A, two clones were found, one consisting of eight
blocks and another consisting of seven blocks. The platform con-
tains two occurrences of a pattern of a few blocks; one occurrence
is included in the clone. It is not clear why one is chosen over the
other. Case B contains only a single clone, by the size of ten blocks.

In general, detecting clones using ConQAT worked fairly well for
our use case, because we expect identical clones between platform
and components. Nevertheless, it is still challenging to properly
configure the tool (e.g., the minimum size of clones) to obtain de-
sired results. Another potential hiccup is the requirement of the
clone detection tool to provide input models in the textual .md1l
format, which is not supported for all models, for example, those in-
cluding internal test harnesses. We did not encounter this problem
in our setting since all test harnesses had previously been exported.

An underlying assumption of our approach is that the software
component models can be divided into meaningful fragments, rep-
resenting small chunks of functionality, such as input handling,
or a particular calculation. When applying the approach on a set
of industrial models, we found that this assumption does not al-
ways hold. In particular, smaller models proved less suitable for our
approach since the cloned fragments were either too small to be
meaningful or not existing at all. Furthermore, for small models, a
manual approach could be a better choice time-wise.

Co-evolution of Simulink Models in a Model-Based Product Line

Step 2. In case A, since there are two clones, the step to create a
subsystem from a cloned fragment has to be executed twice. This
works fine, but one thing that could form a barrier for practical use
is that the intermediate result can look messy since the creation
of subsystems will cause other lines to rearrange and possibly get
entangled.

Step 3. A considerable amount of changes in the revision history
are non-functional. They are limited to e.g. updates to parameter
names or comments. In case A, the change in the platform is a
correction to the model for which an extra multiplication with a
constant factor is added to a flow. In case B, also functionality is
added to the model, but in contrast to case A, it is partially outside
of the cloned fragment and is therefore not propagated by the
approach, as described in Section 3.

Step 4. In case A, the unpacking functions correctly. It should
be mentioned that for practical applications a hinder may be that
the layout of the model after applying these steps may differ sig-
nificantly from the layout before the steps. This holds even if the
co-evolution is limited to the updates of parameter values.

Moreover, we have encountered a type of case in which our
approach does not help the engineers much. One example concerns
arefactoring impacting the entire model, rather than being localized
to a specific model fragment. Examples of such refactoring efforts
include: starting to monitor values on all output ports for testing
purposes, externalizing a model’s test harness, or upgrading the
model to work with a new Simulink version. In these cases, our
proposed approach would likely miss some occurrences, since they
would occur outside cloned fragments.

5 DISCUSSION

We have shown our implementation of automatic support for co-
evolution between models in an industrial setting of a software
product line. The implementation can be integrated into the de-
velopment process since it builds on the same Matlab platform as
the Simulink models. Nevertheless, some points in our approach
require further research, as identified throughout Section 4. For
example, a possible scenario is that a single evolution affects several
cloned fragments. In that case, propagating a few of them may not
yield a meaningful model, for instance, because an extra value was
introduced in one cloned fragment but not used in any other. This is
somewhat related to the issue of changes across clone borders that
cannot be propagated. In the end, there may remain cases for which
the approach does not provide the desired result. However, thus far,
these concerns have not impacted the application of the approach,
because they did not occur in the studied industrial models. Overall,
it is clear that the solution is not the holy grail and that several
problems remain open.

In Section 4, we showed that the approach still requires human
intervention for a few decision-making actions. Ideally, all steps
not strictly requiring an engineer’s decision would be automated,
but the following implementation challenges have prevented us
from doing that so far. To automate the application of changes
in the library subsystem, it is required to be able to refer to the
same block across different models. Handles are not carried over
between models so it is required to rely on identifiers. However,

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

most blocks within the models have no explicit name, but they
rather get automatically assigned names (e.g. LogicalOperator4).
This numbering system may completely change in the case of a
derived product in which some modifications were made, hence
identifiers are also not reliable to identify blocks across models.
Even if this would be solved, there is still one action left to be
done manually, which cannot be automated. More specifically, the
engineer must decide whether to accept or discard the proposed
co-evolution. By using our approach, the engineer gets access to
more information to base that decision on, since the proposed co-
evolution model can be tested and other model metrics derived
from it.

When using the approach, an unexpected benefit was to get
support for localizing reused fragments. There was no traceabil-
ity for this in place except for an inconsistently followed naming
convention at the level of model files that indicates if they are
derived and modified after being branched off from the platform.
Although requirements traceability is in place in the industrial set-
ting, it specifically links requirements to Simulink models and test
harnesses. The application of the clone detection tooling allowed
instead for identification of reuse at sub-model level. In the studied
setting, we encountered flat models, in contrast to the common
practice in Simulink of creating hierarchies of nested subsystems.
The approach is not dependent on the absence of subsystems, but
the practical implementation is guided by it. Indeed, the typical
absence of hierarchy in the studied setting and the expectation of
finding exact model fragment clones have guided our choice of
clone detection tool.

The studied problem exists in part because of the clone-and-own
practice and the accompanying lack of traceability between re-used
model fragments. As a way forward towards a product line, we
mention two main directions. In the first, Step 4 of the approach
could be omitted, which would allow the practice to migrate to a
more systematic product line. In such a case, the identified clones
might be lifted to a variant description model in pure::variants [5],
which could then be used to generate different model variants. The
second direction would be to have more support for product lin-
ing in the modelling language, such that clone-and-own may be
avoided. Variability in Simulink can be managed through feature
modelling, negative variability, or delta modelling [2]. In our set-
ting, we would want to manage variability outside single models,
given the strict regulations on their certification. Therefore, feature
modelling and managing variability using pure::variants could be a
good alternative in the studied setting, despite the required changes
throughout the engineering process to fully benefit from this way
of organizing reuse.

It is clear that the proposed approach is heavily guided by the
used modelling tooling and practices in the studied setting. Nev-
ertheless, we can imagine generalization to other modelling lan-
guages. At a very high level, the approach is not uniquely applicable
to Simulink only, we can imagine finding clones between models
and then replacing them with references in other languages too.
However, this depends also on the storage format of models. For
modelling tools with repository-based instead of file-based storage,
variability may be addressed in a completely different way, making
our approach less applicable. We finalize this discussion by reit-
erating that, in this work, we address an existing clone-and-own

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

practice and aim to provide means to improve it, despite knowing
that it is not the ideal product line practice.

6 RELATED WORK

Within MDE, co-evolution commonly refers to model-metamodel
co-evolution [6]. In contrast, co-evolution in software product line
engineering commonly refers to the parallel evolution of a fea-
ture model and software model. For example, recent work on co-
evolution in model-based product lines enables the co-evolution
of a feature model and model variants, through an approach com-
bining the management of revisions of models through time and
across variants [27]. In this work, we have considered a third op-
tion, the co-evolution of software models belonging to a platform
and derived products in a model-based software product line. A
key difference between existing co-evolution work and our work is
that we cannot rely on the formal conformance relation between
artifacts, as is typically done in operator or inference approaches
to co-evolution in MDE [16]. Instead, in our case, the derived prod-
ucts are merely inspired by the platform, but there are no more
guarantees about the relation between them.

We study the co-evolution of Simulink models between which
fragments have been reused through exact copies. Alternatively,
Rumpe et al. propose to assess reuse opportunities of Simulink
model fragments by checking that the behaviors of different frag-
ments are the same [25]. In their work, they also consider a software
product line setting. They note, similar to us, that behaviorally iden-
tical fragments across models may be replaced with references to
a single library fragment. Due to the expectation of encountering
exact syntactic clones in the studied setting, we do not further
study the identical behaviors of different models. Other work also
considers co-evolution of model fragments [19], but in contrast to
our work, they construct a feature model and consider the auto-
matic creation of variants from it. In our case, the variants have
already been created and must be co-evolved with the platform
from which they are derived. A similar study checks the integrity
of the co-evolution by utilizing notations from evolutionary biol-
ogy that keep track of the variations between the platform and
derived products [3]. Other work considers co-evolution of models
and libraries [4]. Although that work seems closer to our studied
setting, still it relies on a formal conformance relationship between
the models and the libraries.

There have been other works considering variability in Simulink
models. Dajsuren has proposed to manage clones and their variants
outside of models, through configuring clones using a textual lan-
guage [7, Chapter 7]. The approach allows for reuse of subsystems
across different models while keeping the clone management sepa-
rate from the main model, thus preventing overloaded models from
growing too large and becoming unreadable. Another proposal
to prevent overly overloaded models is to define model variants
using the set of operations that are required to obtain the variant
from the base model, so-called delta-modeling [12]. In this work,
we have a different starting point, since we already encounter an
existing clone-and-own product line. Neither of the aforementioned
approaches specifically considers co-evolution of the cloned frag-
ments. Other work has specifically explored three-way-merging

Jongeling et al.

as a solution to co-evolution in software product lines [26]. As we
have argued, there is an inevitable need for human intervention in

those cases and as we then hypothesize, resolving conflicts would
be easier when the engineer can reason about them at the level of
functionalities rather than individual blocks.

There has also been some work towards impact analysis [21]
and test evolution [22] for Simulink models in an industrial setting.
Since the proposed approaches and implementations in those works
are tightly integrated with the industrial setting in which they are
developed, their results are not so easily generalized. The impact
analysis work assesses the impact of changes in a model on their
tests by forward and backward traversal of the flow in the model,
until reaching input and output ports. All tests involving those
inputs or outputs are then said to be impacted. The test evolution
work builds further on that test identification work to generate
test harnesses in case the evolution requires the creation of a new
one. Hence, the work limits consideration of co-evolution to tests.
This is one of the aspects we aim to consider in our future work,
whereas in this paper we have focused on co-evolution of software
models.

Related work on clone management [15] emphasizes its need
but focuses on code-based software representations. Within code
clone analysis, evolution of code clones is often studied with the
aim of visualizing it [23]. Moreover, those studies have reported
disagreeing findings from empirical studies [17]. In addition to
these code-based clone evolution studies, other works have consid-
ered graph-based (Simulink) models as well. ModelCD is a clone
detection tool based on ConQAT that can detect exact and near-
miss clones across Simulink models [18]. The evolution of cloned
Simulink fragments has been studied before too [28]. In that work,
the authors focus on identifying clones across revisions of Simulink
models to study their evolution.

7 CONCLUSION

We have presented our approach for the co-evolution of Simulink
models in a model-based product line. Co-evolution is considered
at the level of model fragments that are cloned across a platform
and derived products. In this work, we aimed to provide support
for the process of assessing whether or not a change should be
propagated. The feasibility of our approach is shown on a realistic
example model. We showed that our approach yields correct results
and that automated support aids in the decision-making process.
To improve the practical applicability of this work, we plan to
extend our approach to include “what-if” analysis on the generated
co-evolved products. This kind of analysis aids engineers in assess-
ing whether to accept or discard a change and ascertaining how
associated test cases should be updated given a change to a model.
We will then build upon that for another planned future work,
where we plan to provide more support for semi-automatically
co-evolving the test cases as well. This will contribute to one of our
main goals, i.e. reducing the effort of review and test upon platform
evolution. Another interesting future direction is to consider alter-
natives for the code clone detection step. For that, we are looking
into combining our work with other research efforts carried out at
our partner company which focus on the automatic identification of
potential model fragment reuse based on requirements similarity.

Co-evolution of Simulink Models in a Model-Based Product Line

REFERENCES

(1]

A

=
&

[11

[12]

[13]

[14]

[15]

Manar H Alalfi, James R Cordy, Thomas R Dean, Matthew Stephan, and Andrew
Stevenson. 2012. Models are code too: Near-miss clone detection for Simulink
models. In 2012 28th IEEE International Conference on Software Maintenance
(ICSM). IEEE, 295-304. https://doi.org/10.1109/ICSM.2012.6405285

Aitor Arrieta, Goiuria Sagardui, and Leire Etxeberria. 2014. A comparative
on variability modelling and management approach in simulink for embedded
systems. V Jornadas de Computacion Empotrada, ser. JCE 26-33 (2014).

Anissa Benlarabi, Bouchra El Asri, and Amal Khtira. 2014. A co-evolution model
for software product lines: An approach based on evolutionary trees. In 2014
Second World Conference on Complex Systems (WCCS). IEEE, 140-145. https:
//doi.org/10.1109/ICoCS.2014.7060991

Luca Berardinelli, Stefan Biffl, Emanuel Maetzler, Tanja Mayerhofer, and Manuel
Wimmer. 2015. Model-based co-evolution of production systems and their li-
braries with AutomationML. In 2015 IEEE 20th Conference on Emerging Technolo-
gies & Factory Automation (ETFA). IEEE, 1-8. https://doi.org/10.1109/ETFA.2015.
7301483

Danilo Beuche. 2003. Variant management with pure:: variants. Technical Report.
Technical report, pure-systems GmbH, 2003. http://www. pure-systems. com.
Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio.
2008. Automating co-evolution in model-driven engineering. In 2008 12th Inter-
national IEEE Enterprise Distributed Object Computing Conference. IEEE, 222-231.
https://doi.org/10.1109/EDOC.2008.44

Yanjindulam Dajsuren. 2015. On the design of an architecture framework and
quality evaluation for automotive software systems. Ph.D. Dissertation.

Charles Darwin. 1909. The origin of species. PF Collier & son New York.

Florian Deissenboeck, Benjamin Hummel, Elmar Jiirgens, Bernhard Schitz, Stefan
Wagner, Jean-Francois Girard, and Stefan Teuchert. 2008. Clone detection in auto-
motive model-based development. In 2008 ACM/IEEE 30th International Conference
on Software Engineering. IEEE, 603-612. https://doi.org/10.1145/1368088.1368172
Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2011. What is
needed for managing co-evolution in MDE?. In Proceedings of the 2nd International
Workshop on Model Comparison in Practice. 30-38. https://doi.org/10.1145/
2000410.2000416

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing clone-and-own with systematic reuse for developing
software variants. In 2014 IEEE International Conference on Software Maintenance
and Evolution. IEEE, 391-400. https://doi.org/10.1109/ICSME.2014.61

Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed Nazari, Bern-
hard Rumpe, and Ina Schaefer. 2013. First-class variability modeling in Mat-
lab/Simulink. In Proceedings of the Seventh International Workshop on Variability
Modelling of Software-intensive Systems. 1-8. https://doi.org/10.1145/2430502.
2430508

Grischa Liebel, Nadja Marko, Matthias Tichy, Andrea Leitner, and Jérgen Hansson.
2016. Model-Based Engineering in the Embedded Systems Domain: an Industrial
Survey on the State-of-Practice. Software & Systems Modeling 17, 1 (2016), 91-113.
https://doi.org/10.1007/s10270-016-0523-3

MathWorks. 2017. Modeling a Fault-Tolerant Fuel Control System. Retrieved
May 24, 2020 from https://mathworks.com/help/simulink/slref/modeling-a-fault-
tolerant-fuel-control-system.html

Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H Pham, Jafar Al-Kofahi, and
Tien N Nguyen. 2011. Clone management for evolving software. IEEE transactions
on software engineering 38, 5 (2011), 1008-1026. https://doi.org/10.1109/TSE.2011.
90

MODELS ’20, October 18-23, 2020, Virtual Event, Canada

[16] Richard F Paige, Nicholas Matragkas, and Louis M Rose. 2016. Evolving models

in model-driven engineering: State-of-the-art and future challenges. Journal of
Systems and Software 111 (2016), 272-280. https://doi.org/10.1016/j.js5.2015.08.047
Jeremy R Pate, Robert Tairas, and Nicholas A Kraft. 2013. Clone evolution: a
systematic review. Journal of software: Evolution and Process 25, 3 (2013), 261-283.
https://doi.org/10.1002/smr.579

Nam H Pham, Hoan Anh Nguyen, Tung Thanh Nguyen, Jafar M Al-Kofahi, and
Tien N Nguyen. 2009. Complete and accurate clone detection in graph-based
models. In 2009 IEEE 31st International Conference on Software Engineering. IEEE,
276-286. https://doi.org/10.1109/ICSE.2009.5070528

Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and
Stefan Kowalewski. 2012. Model-driven support for product line evolution on
feature level. Journal of Systems and Software 85, 10 (2012), 2261-2274. https:
//doi.org/10.1016/j.js5.2011.08.008

Klaus Pohl, Giinter Béckle, and Frank J van Der Linden. 2005. Software product line
engineering: foundations, principles and techniques. Springer Science & Business
Media.

Eric J Rapos and James R Cordy. 2017. SimPact: Impact analysis for simulink mod-
els. In 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 489-493. https://doi.org/10.1109/ICSME.2017.21

Eric J Rapos and James R Cordy. 2018. SimEvo: A Toolset for Simulink Test
Evolution & Maintenance. In 2018 IEEE 11th International Conference on Software

Testing, Verification and Validation (ICST). IEEE, 410-415. https://doi.org/10.1109/
ICST.2018.00049

Chanchal K Roy, Minhaz F Zibran, and Rainer Koschke. 2014. The vision of
software clone management: Past, present, and future (keynote paper). In 2014
Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE). IEEE, 18-33. https://doi.org/10.1109/
CSMR-WCRE.2014.6747168

Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing cloned
variants: a framework and experience. In Proceedings of the 17th International
Software Product Line Conference. 101-110. https://doi.org/10.1145/2491627.
2491644

Bernhard Rumpe, Christoph Schulze, Michael Von Wenckstern, Jan Oliver Ringert,
and Peter Manhart. 2015. Behavioral compatibility of simulink models for product
line maintenance and evolution. In Proceedings of the 19th International Conference
on Software Product Line. 141-150. https://doi.org/10.1145/2791060.2791077
Sandro Schulze, Michael Schulze, Uwe Ryssel, and Christoph Seidl. 2016. Aligning
coevolving artifacts between software product lines and products. In Proceedings
of the Tenth International Workshop on Variability Modelling of Software-intensive
Systems. 9-16. https://doi.org/10.1145/2866614.2866616

Felix Schwigerl and Bernhard Westfechtel. 2019. Integrated revision and variation
control for evolving model-driven software product lines. Software and Systems
Modeling 18, 6 (2019), 3373-3420. https://doi.org/10.1007/s10270-019-00722-3
Matthew Stephan, Manar H Alalfi, James R Cordy, and Andrew Stevenson. 2013.
Evolution of Model Clones in Simulink. In ME@ MoDELS. Citeseer, 40—-49.
Matthew Stephan and James R Cordy. 2015. Identification of Simulink model
antipattern instances using model clone detection. In 2015 ACM/IEEE 18th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS).
IEEE, 276-285. https://doi.org/10.1109/MODELS.2015.7338258

MathWorks Support Team. 2013. How can I replace my Model Refer-
ence block with a Subsystem in Simulink? Retrieved May 24, 2020
from https://www.mathworks.com/matlabcentral/answers/98940-how-can-i-
replace-my-model-reference-block-with-a- subsystem-in- simulink

https://doi.org/10.1109/ICSM.2012.6405285
https://doi.org/10.1109/ICoCS.2014.7060991
https://doi.org/10.1109/ICoCS.2014.7060991
https://doi.org/10.1109/ETFA.2015.7301483
https://doi.org/10.1109/ETFA.2015.7301483
https://doi.org/10.1109/EDOC.2008.44
https://doi.org/10.1145/1368088.1368172
https://doi.org/10.1145/2000410.2000416
https://doi.org/10.1145/2000410.2000416
https://doi.org/10.1109/ICSME.2014.61
https://doi.org/10.1145/2430502.2430508
https://doi.org/10.1145/2430502.2430508
https://doi.org/10.1007/s10270-016-0523-3
https://mathworks.com/help/simulink/slref/modeling-a-fault-tolerant-fuel-control-system.html
https://mathworks.com/help/simulink/slref/modeling-a-fault-tolerant-fuel-control-system.html
https://doi.org/10.1109/TSE.2011.90
https://doi.org/10.1109/TSE.2011.90
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1002/smr.579
https://doi.org/10.1109/ICSE.2009.5070528
https://doi.org/10.1016/j.jss.2011.08.008
https://doi.org/10.1016/j.jss.2011.08.008
https://doi.org/10.1109/ICSME.2017.21
https://doi.org/10.1109/ICST.2018.00049
https://doi.org/10.1109/ICST.2018.00049
https://doi.org/10.1109/CSMR-WCRE.2014.6747168
https://doi.org/10.1109/CSMR-WCRE.2014.6747168
https://doi.org/10.1145/2491627.2491644
https://doi.org/10.1145/2491627.2491644
https://doi.org/10.1145/2791060.2791077
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1007/s10270-019-00722-3
https://doi.org/10.1109/MODELS.2015.7338258
https://www.mathworks.com/matlabcentral/answers/98940-how-can-i-replace-my-model-reference-block-with-a-subsystem-in-simulink
https://www.mathworks.com/matlabcentral/answers/98940-how-can-i-replace-my-model-reference-block-with-a-subsystem-in-simulink

	Abstract
	1 Introduction
	2 Motivation
	2.1 A clone-and-own Software Product Line
	2.2 Making Software Changes
	2.3 Co-evolution in the Product Line

	3 Approach
	4 Feasibility study
	4.1 Implementation
	4.2 Demonstration
	4.3 Experiences

	5 Discussion
	6 Related work
	7 Conclusion
	References

