
Continuous Integration Support in Modeling Tools
Robbert Jongeling, Jan Carlson, Antonio Cicche�i, Federico Ciccozzi

Mälardalen University, Västerås, Sweden

Email: {robbert.jongeling, jan.carlson, antonio.cicche�i, federico.ciccozzi}@mdh.se

ABSTRACT
Continuous Integration (CI) and Model-Based Development (MBD)

have both been hailed as practices that improve the productivity of

so�ware development. �eir combination has the potential to boost

productivity even more. �e goal of our research is to identify im-

pediments to realizing this combination in industrial collaborative

modeling practices. In this paper, we examine certain speci�c fea-

tures of modeling tools that, due to their immaturity, may represent

impediments to combining CI and MBD. To this end, we identify

features of modeling tools that are relevant to enabling CI practices

in MBD processes and we review modeling tools with respect to

their level of support for each of these features.

1 INTRODUCTION
In this work we couple two concepts: Continuous Integration (CI)

and Model-Based Development (MBD). CI refers to a subset of the

Agile development practices as described by Martin Fowler [11].

Several empirical evaluations have shown the positive e�ects of CI

on productivity in industrial so�ware development projects [20, 27].

�e MBD paradigm holds the promise of increased productivity of

development teams by raising the level of abstraction from code

to models [24]. �e bene�ts of MBD on productivity have been

empirically assessed in industrial se�ings too [5, 16, 21].

We hypothesize that CI practices can further improve the produc-

tivity of MBD. In our research, we aim at identifying impediments to

realizing these practices in industry. Eventually, although not in the

scope of this paper, we aim at resolving them, thereby contributing

to the maturity of collaborative modeling practices.

In this work, we focus on technical challenges towards introduc-

ing CI practices in MBD. We examine modeling tools to identify

particular features that are commonly underdeveloped and thereby

may represent potential impediments to combining CI and MBD.

In particular, we answer the following research questions:

(1) What are relevant features for a modeling tool to be able

to support CI practices?

(2) To what extent are these features provided in current mod-

eling tools?

In the remainder of this introduction, the concepts of CI and

MBD are described in more detail. �e rest of the paper is organized

as follows. Section 2 outlines related reviews of modeling tools.

�e �rst research question is answered in Section 3. In Section 4,

the second research question is answered. �e results are discussed

in Section 5. �reats to the validity of our work are outlined in

Section 6 and the conclusions are provided in Section 7.

1.1 Continuous Integration
CI is one of the twelve Extreme Programming (XP) practices [11].

In turn, XP is one of the elements of the so�ware development

concepts published in the Agile manifesto [6]. Since then, various

practices regarding the frequency and level (e.g. the entire system,

a sub-system or an own branch) of so�ware integrations have been

developed [19]. �e terms Continuous Integration, Continuous

Deployment and Continuous Delivery are sometimes used inter-

changeably [26]. An unclear de�nition and interchangeable use of

the terms may lead to their devaluation [28]. �erefore, we refer to

the de�nition of Continuous Integration, given by Fowler [11], as

follows:

De�nition 1. Continuous Integration is a collaborative develop-

ment practice where so�ware engineers frequently, at least daily,

integrate their work into a shared repository. A�er each integration,

an automatic build is performed. On successful build, automated

tests are performed.

In MBD, this integrated work consists of models and other mod-

eling artefacts in addition to code. �is may pose additional chal-

lenges, such as di�erencing on model level, that are not encountered

when applying CI practices in conventional so�ware development

projects.

1.2 Model-Based Development
We use the term Model-Based Development (MBD) to denote mod-

eling practices in which models are used to capture functionality

and possibly to generate code. Rios et al. distinguish �ve maturity

levels of modeling practices [23]. �e levels range from ad-hoc to

ultimate and describe immature to complete modeling practices.

Since our goal is to introduce CI practices in MBD, it does not make

sense to consider the �rst level, which describes immature modeling

practices where models are only used by individuals for e.g. design

or documentation. Instead, we are interested the more advanced

levels of modeling practices where models are used by multiple

team members and the eventual code or application derived from

the models must be consistent with these models.

2 RELATEDWORK
Since the publication of the agile manifesto in 2001, research on

combining Agile and modeling practices [4], has been performed.

Evidence-based so�ware engineering studies of the �eld have shown

that Agile modeling is not a mature �eld yet [1, 15]. In particular,

these studies identify the need for more reports on Agile modeling

practices in industry.

Although Agile modeling is a topic treated in several research

articles and CI is named as a needed practice in modeling [2], we

have only found few that go into the details of the Agile practice

of CI in combination with MBD. Garcı́a-Dı́az et al. identify four

problems in applying CI practices in an MBD project [14]. Among

these problems, the two most interesting in relation to CI (as we

will see later in Section 3) are version control systems for models

and incremental code generation. Additionally, they stress the im-

portance of uniform, user-friendly interfaces and the variability

jcn01
Textruta
3nd International Workshop on Collaborative Modelling in MDE, 2018
Published in CEUR Workshop Proceedings



of technologies in di�erent phases of the pipeline. �ey build and

evaluate a prototype solution to resolve these identi�ed problems

in an MBD project. �is solution focuses on modeling approaches

where models are used to generate 100% of the code for an applica-

tion, whereas we consider also modeling approaches where only

parts of the code are generated.

Some work has been done towards a build server for MBD [30].

�e authors identify the need to support veri�cation and validation

of models. Furthermore, they argue the need for build tooling to

support a mix of automatic and manual actions.

Recently, early work towards resolving impediments to combin-

ing Continuous Delivery and MBD was presented [12, 13]. �e

authors identify the main technical impediment to be the model-

awareness of the integration server. Furthermore, they remark that

for all typical MBD activities, tools that can be included in a pipeline

are available. Our approach looks at this from a di�erent perspec-

tive; we explore modeling tools and then consider the possibilities

to introduce CI practices.

Naturally, there are aspects of MBD in general, not just the com-

bination of CI and MBD, that are relevant to its adoption in industry.

�e impediments may be technical or be related to organizational

factors of the so�ware development process. Tooling is one of

the aspects preventing a more wide-spread adoption of MBD in

industry; another is the lack of clear processes to support devel-

opment [33]. �ere are numerous organizational challenges that,

if not properly tackled, hinder agility in MBD [29]. Other impedi-

ments to the adoption of MBD that are highlighted in literature are

the lack of tool interoperability [18], and the steep learning curve

for developers [5, 29]. Furthermore, impediments might lie in devel-

opment processes of companies and the required time and money

investments to change these. Technical challenges include poor

scalability of the modeling practice in general in large industrial

applications of MBD [5]. Related to these are automated test gener-

ation and performance of generated code. Finally, Selic mentions

challenges regarding the integration with legacy systems, trace-

ability of generated code and the ability to execute models [25].

Nevertheless, we limit the scope of this paper to those aspects

relevant for introducing CI practices in MBD.

In megamodeling, a model is created to describe the relationships

between all concepts in a modeling project [10]. Since part of the

work to enable CI practices is to chart the artefacts in a project and

how they are related, a CI pipeline could be seen as a megamodel.

In this paper, we do not further explore this relation and instead

focus on existing modeling tools that are used in current practice.

3 IDENTIFYING RELEVANT ASPECTS
In this section, we identify aspects of modeling tools that are rele-

vant for enabling CI practices in MBD. We �rst identify core aspects

of CI based on our de�nition and existing literature. �en, we list

particular aspects that realize these general CI aspects in the MBD

domain, based on existing MBD literature. We submi�ed the identi-

�ed aspects for review to two industrial practitioners of MBD. �e

resulting aspects are summarized in Table 1.

3.1 Core CI Aspects
In their literature study, Shahin et al. provide an overview of

types of tools used to form a pipeline for Continuous Deployment

(CD) [26]. �e categories are: Version Control System, Code Manage-
ment and Analysis, Build System, CI Server, Testing, Con�guration
and Provisioning, and CD Server. �ey note that an implementation

of CD does not necessarily include all categories. Furthermore, the

set of CI practices can be considered a part of that CD pipeline,

where the la�er two tool categories (i.e. Con�guration and Provi-
sioning and CD Server) are excluded. Nevertheless, the CD pipeline

is a good starting point to �nd out relevant features for combining

CI and MBD.

We now elaborate on each of the proposed categories and their

relevance for CI practices in MBD. A Version Control System (VCS)

is used to manage di�erent versions of developed artefacts. �e

artefacts are typically stored in a shared repository, sometimes

allowing developers to copy it and work on their own instance, or

branch. Integration of code is done into this shared repository. Code

management and analysis techniques such as static code (or model)

analysis might be employed to improve the quality of artefacts in a

CI process. �ey are however themselves not closely related to the

three main activities in the de�nition of CI: integrating, building

and testing. �erefore, we do not include the Code Management and

Analysis category. A build system typically combines artefacts to

create executables. In the case of MBD, this could mean generating

code from models but also keeping the consistency of several related

models. CI servers do not perform builds themselves but rather

execute builds and automated tests in other tools, the results are

combined in a status overview [11]. �ese automated tests are

important to indicate the quality of integrations. In that way, they

contribute to increasing the predictability of the amount of work

le�, one of the purposes of CI.

3.2 MBD Aspects Related to the Core
Continuous Integration CI Aspects

We di�erentiate between three types of projects to which CI can be

applied. �e �rst type is traditional so�ware development, no mod-

els are used at all. �e second type is very mature MBD, where all

code is generated from models and no manual coding is performed.

�e third type concerns less mature kinds of MBD, where code is

partially generated and then manually extended to form a complete

application. We consider the la�er two types in this paper. �e

inclusion of modeling artefacts in the CI process requires that some

parts of integration, testing and building are handled di�erently. In

this section, we identify the speci�c aspects of MBD that constitute

these di�erences.

3.2.1 Integration. We consider the integration of changes to

individual artefacts into the repository and focus on the aspects

of model di�erencing and model merging to facilitate this inte-

gration. Integration is thus considered an activity localized to the

directly changed artefacts. If multiple artefacts need to be changed

to maintain consistency of the models, this is considered as the

responsibility of the developer.

In order to integrate models in a shared repository, there must

be a way to control their di�erent versions. Zhang and Patel [34]

refer to CI in MBD as “Continuous Modeling.” �ey identify the



need to merge frequently, but also note that merge tooling cannot

handle many simultaneous changes. Merging of models is also

identi�ed as an important aspect to the adoption of modeling tools

in general [7, 29]. Alternatively, pessimistic locking is used to avoid

merge con�icts by allowing only one developer at a time to make

changes to a model or part of a model [3].

3.2.2 Building. �ere is no direct MBD equivalent of a build sys-

tem for conventional programming languages. A build system for

models requires more steps than a build system for code, since code

needs �rst to be generated from the models and possibly altered or

completed by developers. Given the scope of our research, we adapt

the previously identi�ed aspect of a build server to include more

model-speci�c actions. Automated code generation is a central part

of continuous integration in a modeling context [34]. Furthermore,

it is argued that code generators should work incrementally, i.e.,

that code should be generated only for parts of the model that have

changed [14]. But the key elements of building in MBD are the

ability to generate code and the ability to synchronize models and

code. �erefore, we add only code generation and model discovery

as relevant aspects.

For the di�erent types of CI projects, these aspects can have

di�erent meanings. In projects with complete code generation, this

generation is a task for the build server and is not performed locally

by developers. When code is only partially generated, this can be

done both locally and on the build server. In case of complete code

generation, model discovery is irrelevant, it will never be done since

the code is never manually edited. Conversely, in a partial code

generation scenario, model discovery can be needed both locally

and remotely. In the simplest form, a developer locally makes

changes to a piece of generated code and immediately updates the

corresponding model too. In a more complex scenario, a developer

could only change the code, integrate it and expect the build server

to propagate her changes to the model.

3.2.3 Testing. We distinguish three components of testing in

MBD: validating the model with respect to syntax, verifying the

model with respect to prede�ned requirements and verifying mod-

els a�er integration (integration testing). �e aforementioned con-

tinuous modeling practices specify unit and integration testing as

important practices to build con�dence in the product [34]. Veri-

�cation and validation of models are identi�ed as crucial features

of a build server for MBD [30]. In both cases, “testing” speci�cally

refers to testing the correctness of the created models, it is assumed

that correct models yield correct code and thus correct applica-

tions. We therefore add model validation and veri�cation, as well

as integration testing, as sub-categories of the testing aspect.

Again, some distinctions can be made in testing between the

di�erent types of CI projects. In case of complete code generation,

testing the models and the generated code should yield the same re-

sults. In partial code generation projects, code is the predominantly

tested artefact. In both cases, validation of models with respect to

syntax is an implicit part of the code generation process, which

will not yield correct output for invalid models. �is validation can

also be a local action, but this is not required for the CI process.

It does not prevent the integration of invalid or incorrect models,

analogous to traditional so�ware development in which e.g. non-

compiling or incorrect code is integrated. In such cases, the builds

or tests are expected to fail.

3.2.4 Model-Awareness. In some work about combining CI and

MBD, authors have argued the need for more model-awareness in

tasks related to CI. In case of the build tooling, it is argued that

manual actions that are typically performed in MBD should be

taken into account and that testing should focus on validation and

veri�cation of models [30]. Others argue that the entire pipeline

should be model-aware, such that dependencies between artefacts

and between jobs in the pipeline that would be lost in textual

representations can be discovered [13]. Garcı́a-Dı́az et al. also note

lack of model-awareness, particularly in version control systems

and code generation [14]. We do not add an aspect model-awareness
to our list but when discussing the other aspects in modeling tools,

we do take into account to what extent their implementation is

model-aware.

�e need for model-awareness may also refer to the need to syn-

chronize several models when one of them is changed. In our case,

this model synchronization is limited to the consistency of models

and code, and between several models in a single project. In other

cases, the term co-evolution is used to refer to similar activities that

also include the synchronization of models and metamodels, or the

synchronization of models and model transformations. Since the

most used metamodels in the considered tools are UML and SysML,

they and the model-to-text transformations (code generators) are

typically not changed during a project. We therefore refer to this

MBD aspect as “model synchronization.”

Extensive support for activities related to model synchroniza-

tion, such as automatically handling inconsistencies, is required

in modeling tools [32]. Model synchronization is also related to

code generation and model discovery, i.e., the automatic creation

of a model from code. Since the generated code and models can

become inconsistent a�er changes to either. Modeling tools can

support this synchronization, e.g. by providing automated impact

analysis for changed artefacts, but the process cannot always be

automated. �erefore, manual actions could be required during

model synchronization, this step is unsuitable for inclusion in au-

tomated builds. Since we envision a CI pipeline for models that is

automated similarly to that for traditional so�ware development,

we consider model synchronization to be a task performed locally

by a developer. Consequently, the CI server or build server is not

concerned with tasks such as propagating changes to other arte-

facts. �e identi�ed need for support is still relevant, since the

developer should be supported in her local work.

3.2.5 Automation. Interoperability of a modeling tool with other

tools is an important aspect to consider too [34]. To assess their

suitability to cooperate with CI servers, we look at possibilities to

run modeling tools in batch mode or call their functionality from

the command line. If this functionality exists, it can be used to

create a script that automates part of the CI pipeline, including

building and testing. Such automation is of crucial importance to

the adoption of CI practices in industry.



3.2.6 Summary. �e aspects identi�ed in this section are sum-

marized in Table 1. It contains primary aspects (in bold) and sec-

ondary, more speci�c aspects. In Section 4, we evaluate a set of

modeling tools with respect to these primary aspects based on their

support of the secondary aspects. Notably, not all CI aspects are

directly mapped to a single MBD aspect. Rather, the MBD aspects

are speci�c to their domain and target a more speci�c function-

ality than the general CI aspects. In the table, the citations refer

to literature sources used to identify the relevance of the related

aspects.

Table 1: Identi�ed relevant aspects of CI in MBD.

CI MBD

Integration [26] [7, 29, 34]

Model Di�erencing

Model Merging

Building [26]

Code Generation [14, 34]

Model Discovery [32]

Model Synchronization [12, 32]

Testing [26]

A
sp

ec
ts

Model V&V [30]

Integration Testing [34]

Automation [26] [12]

Building

Testing

4 SUPPORTED ASPECTS
In this section, we introduce the evaluated modeling tools and

discuss for each tool how it implements support for the primary

aspects in Table 1. We discuss the tools with respect to their support

for the relevant aspects of CI in MBD as discussed in Section 3.

Note that the selection of modeling tool(s) depends on more than

just the ability to use it in a CI process applied to an MBD project.

Conversely, a CI process in MBD depends on more than just the

used modeling tool(s), such as the maturity level of the modeling

practices. �e goal of our work is not to identify the best modeling

tool for CI, but rather to investigate which impediments in applying

CI to MBD projects exist.

4.1 Modeling Tools
�e selection of modeling tools was based on their use in industry

and on inputs from our industrial partners. We included the four

most-used
1

tools in industry as reported by practitioners [18]: Mat-

lab Simulink, Sparx Systems Enterprise Architect, IBM Ra-

tional Rhapsody
2
, and National Instruments LabVIEW. A�er

discussions with our industrial partners, this list was supplemented

with four additional tools that are most relevant to their daily

work: NoMagic Magic Draw, PTC Integrity Modeler, OneFact

BridgePoint, and Eclipse Papyrus. Most of these tools support

1
Excluding Eclipse-based tools and in-house tools, since they cannot be speci�ed to a

particular tool. �ey are reported as second and fourth most used respectively [18].

2
In [18] the reported tool is Rational Modeler, but we include Rational Rhapsody,

which can be seen as its successor.

UML and SysML, among the most used modeling languages in in-

dustry [18]. Exceptions to this are BridgePoint, which supports

xtUML (an executable dialect of UML), LabVIEW, which supports

their “G” graphical modeling language, and Simulink, which sup-

ports modeling in the Simulink language. Most of the tools thus

support general purpose modeling languages. �e most advanced

modeling practice includes the creation of custom Domain-Speci�c

Languages (DSLs). Tools used for that purpose are further away

from the state of practice at our industrial partners and therefore

not included in this evaluation. An overview of the considered tools

is shown in Table 2.

Table 2: Evaluated tools in this review.

Tool Vendor

Supported
Modeling
Languages

BridgePoint OneFact xtUML

Enterprise Architect Sparx Systems UML + SysML

Integrity Modeler PTC UML + SysML

LabVIEW National Instruments G

Magic Draw No Magic UML + SysML

Papyrus Eclipse UML + SysML

Rhapsody IBM UML + SysML

Simulink MathWorks Simulink

4.2 Other Tools
In addition to the modeling tools, a CI pipeline typically also in-

volves Version Control Systems (VCSs) and CI servers. �ere exist

numerous open-source and commercial CI servers, such as Jenk-

ins, Travis, and TeamCity. Some of these allow for a completely

custom de�ned pipeline whereas other tools provide users with a

choice between prede�ned pipelines for some programming lan-

guages. Since we aim at using these tools in MBD processes, we are

particularly interested in those CI servers that allow the de�nition

of a custom pipeline. �erefore, we will mainly refer to Jenkins in

the remainder of this section.

4.3 Tool Evaluations
We evaluated how the selected tools support the primary aspects

depicted in Table 1. �e evaluations are based on publicly available

documentation and research papers about the tools. �e results of

the evaluation are summarized at the end of this section in Table 3.

4.3.1 Integration. In BridgePoint, version control is di�cult

to achieve [31]. Automated merging is not supported but the tool

does show a visual di�erence between two versions of a model.

�is is not necessarily an impediment to introducing CI practices,

but in practice it may discourage developers to integrate frequently

if every integration potentially requires a large manual e�ort.

Enterprise Architect (EA) has no integrated support for model

versioning but relies on pessimistic locking of packages (parts of

models). �is system grants user exclusive editing rights on a

package, thus preventing con�icts due to simultaneous changes.

�e tool does support the integration of several third-party version



control systems, which can be used to store and manage the history

of EA models. Additionally, LemonTree is a third-party project

that supports optimistic locking, three-way merging and branching

for EA models.

Integrity Modeler contains a built-in service for con�guration

management. It includes a weak optimistic locking mechanism

allowing multiple developers to collaborate on the same artefacts

simultaneously. When multiple users are editing the same artefact,

the changes of one of them are visible to each of the others in

real-time. Alternatively, there is an optimistic locking mechanism

available, where these changes are not visible. �en, merges can

be performed automatically and their results manually edited to

resolve merge con�icts.

LabVIEW includes a tool showing graphical di�erences between

model versions. VCSs, such as Git and SVN, can be used to keep

track of di�erent model versions. �e di�erencing functionality of

those tools can then be redirected to use the graphical di�erence

available in LabVIEW. Merges can be performed automatically and

merge con�icts can be resolved manually.

Magic Draw contains a built-in server for version control, it

provides a model repository and supports collaboration through

branching and merging. Branching allows multiple developers

to work in parallel on the same project. A plug-in is available

to support merging at model level. In case branching is not used,

concurrent changes directly on the mainline are prevented by means

of pessimistic locking. �e locks can be acquired at sub-model level,

i.e., parts of a model can be locked for editing. �e locks can then

be released or maintained on commit.

Papyrus can be extended using plug-ins that are part of the

Eclipse Modeling Framework (EMF). �e Collaborative Modeling

initiative provides such plug-ins, in terms of collaboration support

for modeling in Eclipse, by using EMFCompare for the detection

and merging of changes, EGit for distributed version control and

Gerrit for reviews of models. �is allows developers to create a

branch for a project, make changes and merge them into the main-

line while staying on the model level. �e included version control

system EGit is an implementation of Git, incorporated in Eclipse.

EMFCompare shows di�erences of changes between model ver-

sions from several views (graphical, textual, tabular). It can au-

tomatically merge changes, or in case of con�icts in three-way

merges, allows the developer to choose the version to be integrated.

Rhapsody includes the tool DiffMerge, which can show graph-

ical di�erences and automatically merge models or projects con-

taining models. In case of any merge con�icts, the developer is

shown a graphical di�erence between the versions and can resolve

the con�ict by choosing one of the versions. �e tool also supports

integration of version control systems ClearCase and SVN.

Simulink provides version control support through an integrated

SVN instance but can also be used together with Git. �is allows

a project to be branched and thus models to be edited in parallel.

Simulink contains an integrated tool for three-way model merging.

�e tool automatically merges models and on con�ict o�ers a choice

between the remote, base and local change.

Summary. �ere are three main approaches for model versioning

in the evaluated tools. �e �rst, locking, does not scale to large

collaborative projects. �e second, leaving versioning completely to

a VCS, is not feasible because the VCS is typically not model-aware,

which is required for merging at model level. Furthermore, line

based di�erencing of the XML representations is not appropriate

for models [3]. �e third and most feasible versioning approach

when introducing CI practices is to enable the integration of a

version control tool in the modeling tool, but circumscribing model

di�erencing and merging to the modeling tool itself. Indeed, this

level of support is provided by multiple tools: Simulink, Rhapsody,

Magic Draw, and Papyrus.

4.3.2 Building. BridgePoint provides integrated support for

code generation. �is functionality forms the “Translatable” part

in “eXecutable Translatable UML” (xtUML). xtUML models can be

transformed to C, SystemC or C++ using included model compilers.

�ese compilers are open source and can be customized. It is also

possible to create new compilers to translate models into di�er-

ent programming languages. Changes to generated code are not

propagated back to models. So, there is only support for one-way

development and not for the round-trip from models to code and

back. When the generated code is a complete application rather

than a skeleton or a detached, individual subsystem, this is not

necessarily an impediment to introducing CI practices.

In Enterprise Architect, skeleton code can be generated from

both Class diagrams and Interface models. More detailed code can

be generated from sequence-, activity-, and state machine diagrams.

Several languages are supported, including C, C++, C#, and Java.

Reverse engineering is also (partially) supported since some UML

diagrams can be generated from code. Enterprise Architect

includes a development environment where generated code can

be edited. �is environment also supports typical functionalities

of a code editor such as debugging and pro�ling. Code generation

and reverse engineering can be combined and an option exists

to keep models and code synchronized. When generated code

is updated due to a change in the model, the body of methods

is untouched, only their headers are changed such that previous

work is not undone. Although Enterprise Architect provides

traceability matrices from requirements to models for requirements

engineering, impact analysis for changes in models is not supported.

Some work has been done on creating impact analysis techniques

for any Enterprise Architect model, showing the potential of

third party solutions to solve this problem [17].

Integrity Modeler supports code generation from class and

state-machine diagrams in several programming languages, includ-

ing Ada, C++, and Java. �e generated code might be complete but

usually manual editing is required [22]. �e tool includes function-

ality to keep models and code synchronized in real-time when man-

ually altering the code. Furthermore, it supports impact analysis

by le�ing the user de�ne relationships between di�erent modeling

artefacts. �ese relationships can then be visualized to identify

potential model elements that need to be synchronized.

Using additional code generators, C and Ada code can be gener-

ated from LabVIEW models. Templates on which the generations

are based can be customized. Alternatively, the generated code

can be customized a�er generation. Code generation is a one-way

process, where the generated code is expected to be complete with

no manual editing required. �e generators are designed to produce

code that can be integrated in a larger project.



Magic Draw can generate code in several languages (Java, C++,

C#). In most cases, code generated from models will be skeletons

and thus will be edited by developers to implement complete func-

tionalities. �ere is also support for reverse engineering; models

can be derived from code. Forward and reverse code engineering

is managed using Code engineering sets. �ese sets contain model

elements for which code is generated and conversely �les from

which code is reversed to models. In addition, relationships be-

tween model components can be de�ned. �ese can be visualized

in di�erent ways to show the impact of changes on the remaining

model artefacts in the project.

Papyrus supports code generation from UML models through

plug-ins. �ere are plug-ins available for the generation of C++

and Java code from UML models, but it is also possible to create

custom code generators for other languages. Reverse engineering

is supported as part of the Papyrus Software Designer tooling,

using it, class diagrams can be generated from Java classes and

packages. Using the Papyrus So�ware Designer plug-in, models

and generated code can be synchronized. Changes to the code are

then propagated back to the model and changes in the model are

incrementally applied to the code.

Rhapsody can generate code in C, C++, Java and, using a spe-

ci�c Rhapsody Developer version, also for Ada. �is is done

incrementally, i.e., only new code is generated for modi�ed model

elements. �e generated code can be modi�ed and changes are

propagated back to the model. It is also possible to specify code

that should not be included in this round-trip, which could be use-

ful for implementation-speci�c code that is not to be reused in

other versions of a product. To see the impact of a change on the

other artefacts in the models, Rhapsody supports automated im-

pact analysis. �e user con�gures the analysis by de�ning, among

other things, the types of links to follow and their depth. Given the

result of an impact analysis, it is up to the developer to manually

co-evolve the impacted artefacts.

�e generation of C and C++ code from Simulink models is

supported by additional tools that can be integrated in Simulink,

such as EmbeddedCoder and SimulinkCoder. Generated code is a

complete program, not just skeleton code. Modifying the generated

code can be done at the level of the code generators, which can be

con�gured to replace code by custom snippets. �is also means

that the process of code generation is one-way; there is no support

for propagating manual changes in the generated code back to

the model. Simulink also contains a facility for automated impact

analysis that can predict impacted elements in anticipation of a

particular change.

Summary. �e basic functionality of generating skeleton code

from models is present in each of the considered tools. �e detail of

the created models dictates whether the entire application or only

skeleton code can be generated. �is distinction usually in�uences

the functionality regarding synchronization of models and code too.

�is aspect is usually be�er supported in tools that just produce

skeleton code than in tools that produce complete code and where

thus the generated code does not require manual editing. We have

seen that some tools contain functionality to assess the impact

of changes at model level, but that the implementations still rely

mostly on manual actions, which is not ideal in a automated build

scenario. We note that this type of synchronization functionality

focuses on models and code created in a single modeling tool. In

projects where multiple modeling tools are used, more challenges

related to the synchronization of the di�erent models can be ex-

pected. �is is mainly due to the limitation of impact analysis to

assess only the impact of changes in models to models created in

the same tool.

4.3.3 Testing. To test models, BridgePoint provides a veri�er.
�is functionality forms the “eXecutable” part of xtUML. �e ver-

i�er can be used to test models without the need to regenerate

source code. It executes the model itself and supports placement

of breakpoints and inspection of variable values during the sim-

ulations. �is can be useful for manual testing, but less so in CI

se�ings, where automated testing is preferred.

In Enterprise Architect, models can be simulated and test

scripts can be de�ned to automatically test model elements. In these

scripts, unit tests for Java (JUnit) or .NET (NUnit) can be called. A

skeleton for these unit tests can automatically be generated from

class diagrams. By default, the tool supports the validation of

models with respect to the UML syntax, but custom rules can be

added. Furthermore, validation and test scripts can be used to

automate testing of models, whereas the simulation functionality

is mostly meant for debugging.

LabVIEW includes a framework for unit testing. Test cases can

be de�ned in the tool itself by de�ning input values and expected

output values for a speci�c unit under test. �e tests can be executed

in isolation or in a test suite. �e tool includes a functionality

to track tests and the code it covers, automatically providing the

developer with code coverage information. In addition to this,

models can be validated using static code analysis rules, which can

be customized for particular purposes.

Integrity Modeler contains a framework for automated test-

ing. In it, test cases can be de�ned, triggered and their results

viewed. �e test cases can also be grouped in sessions, allowing

their execution to be automated.

In Magic Draw, models can be validated with respect to pre-

de�ned constraints or custom created constraints expressed in the

Object Constraint Language (OCL). If the validation logic cannot be

expressed in OCL, boolean constraints can be de�ned in Java. Ad-

ditionally, unit tests can be de�ned to verify models or integrations.

JUnit is used to express test cases that can be executed using the

build-in test framework. �e framework also provides functionality

for checking the created program for memory leaks.

Papyrus models can be validated with respect to prede�ned

soundness constraints. Custom constraints can be de�ned in OCL.

Validations can be performed on an entire model as well as on

parts of a model. Warnings or errors are shown in the models

themselves a�er a validation. �is validation is a static check, but

UML models can also be executed, using the execution engine of

the Moka module. �is can be used to manually test models, but

there is also support for automatic testing. �e Papyrus Testing

Framework supports the automatic generation of unit tests from

UML diagrams. �e unit tests can be automatically tested using the

JUnit framework.

Before code is generated in Rhapsody, a model-checker can be

run to validate the model with respect to prede�ned and custom



de�ned rules. Such custom rules have to be wri�en in Java and

can be used to check both the structural and the behavioral aspects

of the model. Included in the tool is also a functionality to simu-

late models (or animate as is the used terminology for this tool).

In addition, the tool can be integrated with other IBM Rational

tools for testing (Test RealTime) and quality assessment (�ality

Manager). Furthermore, the tool includes a framework for the

automatic generation of test cases.

Similar to code generation, there exist additional tools for the

validation and testing of Simulink models. Simulink Test is a tool

that supports creation and execution of test cases for models. Test

cases can be de�ned to verify the models with respect to functional

constraints. It also provides an overview of failed and succeeded

test cases, similar to the dashboard of CI tools.

Summary. Most tools contain a unit testing mechanism. Some

implement their own and some use existing frameworks such as

JUnit. Most tools also include model validation functionality, a

check of the well-formedness of the models with respect to the

metamodel. Additionally, some tools are capable of simulating

models, which is primarily useful for manual debugging. Next, we

look at ways to automate builds and tests in the considered tools.

4.3.4 Automation. �e BridgePoint editor is based on Eclipse

and its model compilers are implemented as Eclipse plug-ins. It is

possible to run these from the command line and thus incorporate

them as a build step in a CI pipeline. Similarly, the testing function-

ality incorporated in the veri�er can be included in an automated

process.

Enterprise Architect o�ers the possibility to create analyzer

scripts, these can be used to automate builds, tests, and other func-

tionalities. �e scripts can be created in the tool itself and allow for

execution of the builds and tests from the command line. �e scripts

can also be used to specify an output �le to contain a generated

report on the test results. Furthermore, they can be used to execute

the models and deploy the project, but that is out of the scope of

our de�nition of CI.

Automation for CI can easily be achieved in Integrity Modeler

using a Jenkins plug-in.
3

�e plug-in can detect changes in the built-

in repository and can be con�gured to execute builds a�er such

a detection. Furthermore, it can retrieve the results of automated

tests, executed a�er the build. �e availability of the Jenkins plug-in

signals a higher level of maturity with respect to CI processes than

seen in other tools.

For LabVIEW, command line interfaces are available as open-

source.
4

�ese allow the builds and tests to be executed by a CI

server, e.g. Jenkins. �e test reports created by the tool can be

stored as HTML �les and as such be shown in Jenkins [9].

Magic Draw supports extensibility by custom add-ins through

its Open API. �is API also allows the tool to be run in batch mode.

�is allows command line access to code generation and unit test

execution, which makes it suitable to be used in a CI pipeline. Alter-

natively, Magic Draw can also be integrated in other applications

using its OSGi interfaces. Since this construct is Java-based, it is

3
h�ps://wiki.jenkins.io/display/JENKINS/PTC+Integrity+Plugin Last access: June 4,

2018

4
h�ps://github.com/JamesMc86/LabVIEW-CLI, retrieved: June 1, 2018

applicable in fewer cases than the generally applicable batch mode

construct.

For Papyrus, code generation and model testing functionalities

are packaged in Eclipse plug-ins. �ese are executable from the

command line, which can be leveraged to include Papyrus in a CI

pipeline, for example by calling these plug-ins from scripts man-

aged by a CI server such as Jenkins. Creating a CI pipeline for

conventional Eclipse projects is a common practice, so it is not

expected that these particular tools would yield new problems.

Rhapsody o�ers command line interfaces for code generation

and the DiffMerge tool. Using these commands, code can be

generated for speci�c components or for a project containing a

number of components. �is allows for these tasks to be integrated

in a CI pipeline where only models are checked in to the version

control system and the application is generated.

It is possible to create a CI pipeline using Jenkins to automat-

ically execute builds and tests in Simulink. Furthermore, the CI

tool can be con�gured to report on the success or failure of the

automated tests. Such a process can be created using MATLAB, Git

and Jenkins [8].

Summary. With some e�ort, each modeling tool can be included

in a CI pipeline. We have seen some examples of ready-made

pipelines including some of the discussed tools. As long as the

di�erent approaches to automation can still be executed from a

pipeline, there should be no impediments regarding combining

automation for multiple modeling tools in one pipeline.

4.3.5 Evaluation Summary. Table 3 summarizes the evaluations

by scoring the di�erent aspects in each tool as mature, standard,

or immature. We de�ne the thresholds for these scores, based on

the identi�ed aspects in Section 3, as follows. For integration, an

immature level of support is considered an approach that does not

allow versioning of models, but e.g. utilizes pessimistic locking.

A standard support would be one where models can be merged.

A mature level of support is considered when the tool also sup-

ports the visualization and resolution of con�icts. For building, an

immature level of support would be one where no code genera-

tion is possible. Code generation is considered standard support,

while mature support includes back-propagation of code changes

to models. For testing, immature level of support only includes

syntactical validation of models. Standard support involves also

veri�cation of models using model testing. Support for testing is

considered mature when it includes unit tests for code and models.

For automation, tools are considered to provide immature support

if they do not feature explicit hooks to incorporate them in a CI

pipeline. A standard level of support includes the possibility to run

the tool in batch mode and perform some actions. We consider the

presence of a command-line API to grant mature level of support

for automation.

5 DISCUSSION
We have summarized the answers to our research questions by

listing relevant features for a modeling tool to be able to support

CI practices in Table 1 and by summarizing the extent to which

these features are present in current modeling tools in Table 3.

https://wiki.jenkins.io/display/JENKINS/PTC+Integrity+Plugin
https://github.com/JamesMc86/LabVIEW-CLI


Table 3: Aspects as supported by tools, scored by -, ◦, or +, de-
picting immature, standard, or mature support respectively.

Tools

B
r
i
d

g
e
P

o
i
n

t

E
n

t
e
r
p

r
i
s
e

A
r
c
h

i
t
e
c
t

I
n

t
e
g

r
i
t
y

M
o

d
e
l
e
r

L
a
b
V

i
e
w

M
a
g

i
c

D
r
a
w

P
a
p

y
r
u

s

R
h

a
p

s
o

d
y

S
i
m

u
l
i
n

k

Integration - - ◦ + + + + +

Building ◦ + + ◦ + + + ◦
Testing ◦ + ◦ + ◦ + + ◦

A
sp

ec
ts

Automation - ◦ + + ◦ ◦ + +

Regarding integration, most of the considered tools provide sup-

port for di�erencing and merging at model level. �ey provide

representations in various formats of model di�erences and allow

developers to resolve merge con�icts at model level. �e storage

of models and change history is usually managed by a VCS such

as SVN or Git. For building, all tools provide some form of code

generation. Nonetheless, there is a great variability in the maturity

of what the environments can do a�er the code is generated. Some

tools automatically keep code and models synchronized whereas

in others code generation is a one-way operation. �e most chal-

lenging aspect seems to be the synchronization of di�erent models,

for which most of the tools include some level of change impact

analysis support. Another challenge is the synchronization of mod-

els when multiple modeling tools are used in the same so�ware

project and combined in the same pipeline. Testing is supported

by each of the tools, but with di�erent maturity levels. Finally, it

is possible to automate at least parts of the build and testing pro-

cesses for each of the tools. For some of the modeling tools such

automated approaches are available, whereas for others it would

require custom con�guration.

From the evaluations of the modeling tools, we did not �nd any

theoretical obstacle in introducing CI practices in MBD. Some tools

already have fairly good support for CI, and by cherry picking

features from other tools, they could be even more suitable for

CI practices. In fact, in Section 4.3.4 we have mentioned some

applications of CI in each of the tools Integrity Modeler, Lab-

VIEW, and Simulink. On the other hand, we foresee challenges

in model synchronization and automation in projects involving

multiple modeling tools.

6 THREATS TO VALIDITY
In dra�ing both the list of relevant aspects and the list of considered

tools there is an amount of subjectivity and possible bias. Tools

and aspects may be omi�ed or be listed but less relevant. Incom-

pleteness of the list of aspects was a threat to the validity of this

work, since we aim to �nd impeding aspects. If crucial aspects

were not included, we could not �nd the corresponding problems

in the evaluated tools. To limit this risk, we gathered core rele-

vant aspects by investigating existing literature on the topics of

CI and MBD; furthermore, the lists were informally validated by

two practitioners from industry with experience in MBD and CI.

Similarly, the selection of the tools contains a bias towards UML

and SysML. Other languages or modeling paradigms may yield

di�erent impediments.

Other threats are related to our chosen research methodology.

�e evaluations are based on publicly available documentation

and research papers. �is means that we did not experiment with

the tools themselves to assess the aspects. �e advantage of this

approach is that we avoid de�ning a scenario to evaluate the tools,

which may not �t all tools or may accidentally favor some of them.

On the other hand, the inherent threat of this approach is that

it does not highlight possible issues only visible when using the

evaluated tools in practice.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we identi�ed relevant aspects of modeling tools to

support CI practices. We then evaluated eight modeling tools and

assessed their levels of support for each of the aspects. In the

evaluated tools, we have seen di�erent maturity levels of support

for the considered aspects. Overall, we found some challenges,

but no insurmountable impediments to introducing CI practices in

MBD.

�e next step of our research consists in a set of interviews

with MBD practitioners working at di�erent MBD maturity levels

and in di�erent companies. Practitioners will be asked to share

their views on introducing CI practices in MBD and their views on

the impediments in their context. �ese interviews may uncover

hidden technical aspects that did not arise in this work, or bring up

other, non-technical impediments, such as those brie�y mentioned

in Section 5.

8 ACKNOWLEDGEMENTS
�e authors would like to thank the industrial partners for their

input in discussions about this work. �is work is part of a project

supported by So�ware Center.

REFERENCES
[1] Hessa Alfraihi and Kevin Lano. 2017. �e Integration of Agile Development and

Model Driven Development - A Systematic Literature Review. In Proceedings
of the 5th International Conference on Model-Driven Engineering and So�ware
Development (MODELSWARD 2017). SCITEPRESS, 451–458.

[2] Hessa Alfraihi and Kevin Lano. 2017. A Process for Integrating Agile So�ware

Development and Model-Driven Development. In Proceedings of MODELS 2017
Satellite Event: FlexMDE. 412–417.

[3] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. 2009. A Survey on

Model Versioning Approaches. International Journal of Web Information Systems
(IJWIS) 5, 3 (2009), 271–304.

[4] Sco� W Ambler. 2003. Agile Model Driven Development is Good Enough. IEEE
So�ware 20, 5 (2003), 71–73.

[5] Paul Baker, Shiou Loh, and Frank Weil. 2005. Model-Driven Engineering in a

Large Industrial Context—Motorola Case Study. In LNCS 3713. Springer, 476–491.

[6] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cun-

ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron

Je�ries, and others. 2001. Manifesto for Agile So�ware Development. (2001).

h�p://agilemanifesto.org

[7] Francis Bordeleau, Grischa Liebel, Alexander Raschke, Gerald Stieglbauer, and

Ma�hias Tichy. 2017. Challenges and Research Directions for Successfully Ap-

plying MBE Tools in Practice. In Proceedings of the 20th International Conference
on Model Driven Engineering Languages and Systems (MODELS). 338–343.

[8] Andy Campbell. 2015. �e Other Kind of Continuous Integra-

tion. (2015). h�ps://blogs.mathworks.com/developer/2015/01/20/

the-other-kind-of-continuous-integration Retrieved: 2018-05-14.

[9] Fredrik Edling. 2013. Using LabVIEW in a Continuous Integration Environment.

(2013). �p://�p.ni.com/pub/branches/northern region/nidays2013/presentations/

sw cag using lv in cont integr environment.pdf Retrieved: 2018-06-01.

http://agilemanifesto.org
https://blogs.mathworks.com/developer/2015/01/20/the-other-kind-of-continuous-integration
https://blogs.mathworks.com/developer/2015/01/20/the-other-kind-of-continuous-integration
ftp://ftp.ni.com/pub/branches/northern_region/nidays2013/presentations/sw_cag_using_lv_in_cont_integr_environment.pdf
ftp://ftp.ni.com/pub/branches/northern_region/nidays2013/presentations/sw_cag_using_lv_in_cont_integr_environment.pdf


[10] Jean-Marie Favre. 2004. Towards a Basic �eory to Model Model Driven En-

gineering. In 3rd Workshop in So�ware Model Engineering, WiSME. Citeseer,

262–271.

[11] Martin Fowler. 2006. Continuous Integration. (2006). h�ps://martinfowler.com/

articles/continuousIntegration.html

[12] Jokin Garcia. 2018. Continuous Model-Driven Engineering. (2018). h�ps:

//modeling-languages.com/continuous-model-driven-engineering/ Retrieved:

2018-05-14.

[13] Jokin Garcia and Jordi Cabot. 2018. Stepwise Adoption of Continuous Delivery

in Model-Driven Engineering – Extended Abstract. DEVOPS (2018).

[14] Vicente Garcı́a-Dı́az, Jordán Pascual Espada, Edward Rolando Núnez-Valdéz, G

Pelayo, B Cristina Bustelo, and Juan Manuel Cueva Lovelle. 2016. Combining the

Continuous Integration Practice and the Model-Driven Engineering Approach.

Computing and Informatics 35, 2 (2016), 299–337.

[15] Sebastian Hansson, Yu Zhao, and Håkan Burden. How MAD are we? Empirical

Evidence for Model-driven Agile Development. In Proceedings of XM 2014, 3rd
Extreme Modeling Workshop, Vol. 1239. 2–11.

[16] John Hutchinson, Jon Whi�le, Mark Rounce�eld, and Steinar Kristo�ersen. 2011.

Empirical Assessment of MDE in Industry. In Proceedings of the 33rd International
Conference on So�ware Engineering (ICSE). IEEE, 471–480.

[17] Melanie Langermeier, Christian Saad, and Bernhard Bauer. 2014. Adaptive

Approach for Impact Analysis in Enterprise Architectures. In International Sym-
posium on Business Modeling and So�ware Design. Springer, 22–42.

[18] Grischa Liebel, Nadja Marko, Ma�hias Tichy, Andrea Leitner, and Jörgen Hans-

son. 2016. Model-Based Engineering in the Embedded Systems Domain: an

Industrial Survey on the State-of-Practice. So�ware & Systems Modeling 17, 1

(2016), 91–113.

[19] Torvald Mårtensson, Daniel Ståhl, and Jan Bosch. 2017. Continuous Integration

Impediments in Large-Scale Industry Projects. In Proceedings of the 2017 IEEE
International Conference on So�ware Architecture (ICSA). IEEE, 169–178.

[20] Ade Miller. 2008. A Hundred Days of Continuous Integration. In Agile. IEEE,

289–293.

[21] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, and Miguel A. Fernandez.

2013. An Empirical Study of the State of the Practice and Acceptance of Model-

Driven Engineering in Four Industrial Cases. Empirical So�ware Engineering 18,

1 (01 Feb 2013), 89–116.

[22] David Norfolk. 2015. PTC Integrity Modeler — a Standards-Based Tool for Systems
and So�ware Engineering. Technical Report.

[23] Erkuden Rios, Teodora Bozheva, Aitor Bediaga, and Nathalie Guilloreau. 2006.

MDD Maturity Model: A Roadmap for Introducing Model-Driven Develop-

ment. In Proceedings of the European Conference on Model Driven Architecture-
Foundations and Applications. Springer, 78–89.

[24] Douglas C Schmidt. 2006. Model-Driven Engineering. IEEE Computer 39, 2

(2006), 25.

[25] Bran Selic. 2003. �e Pragmatics of Model-Driven Development. IEEE so�ware
20, 5 (2003), 19–25.

[26] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous

Integration, Delivery and Deployment: a Systematic Review on Approaches,

Tools, Challenges and Practices. IEEE Access 5 (2017), 3909–3943.

[27] Daniel Ståhl and Jan Bosch. 2013. Experienced Bene�ts of Continuous Integration

in Industry So�ware Product Development: A Case Study. In �e 12th IASTED
International Conference on So�ware Engineering (Innsbruck, Austria, 2013). 736–

743.

[28] Daniel Ståhl, Torvald Mårtensson, and Jan Bosch. 2017. Continuous Practices

and DevOps: Beyond the Buzz, What Does It All Mean?. In So�ware Engineering
and Advanced Applications (SEAA), 2017 43rd Euromicro Conference on. IEEE,

440–448.

[29] Stavros Stavru, Iva Krasteva, and Sylvia Ilieva. 2013. Challenges of Model-driven

Modernization-An Agile Perspective.. In MODELSWARD. 219–230.

[30] Henrik Steudel, Regina Hebig, and Holger Giese. 2012. A Build Server for

Model-Driven Engineering. In Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling. ACM, 67–72.

[31] Nenad Ukić, Pál L Pályi, Marijan Zemljić, Domonkos Asztalos, and Ivan Markota.

2011. Evaluation of Bridgepoint Model-Driven Development Tool in Distributed

Environment. In Workshop on Information and Communication Technologies
conjoint with 19th International Conference on So�ware, Telecommunications and
Computer Networks, So�COM 2011.

[32] Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen. 2008. Challenges

in Model-Driven So�ware Engineering. In International Conference on Model
Driven Engineering Languages and Systems. Springer, 35–47.

[33] Jon Whi�le, John Hutchinson, Mark Rounce�eld, Håkan Burden, and Rogardt

Heldal. 2013. Industrial Adoption of Model-Driven Engineering: Are the Tools

Really the Problem?. In International Conference on Model Driven Engineering
Languages and Systems. Springer, 1–17.

[34] Yuefeng Zhang and Shailesh Patel. 2011. Agile Model-Driven Development in

Practice. IEEE so�ware 28, 2 (2011), 84–91.

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://modeling-languages.com/continuous-model-driven-engineering/
https://modeling-languages.com/continuous-model-driven-engineering/

	Abstract
	1 Introduction
	1.1 Continuous Integration
	1.2 Model-Based Development

	2 Related work
	3 Identifying relevant aspects
	3.1 Core CI Aspects
	3.2 MBD Aspects Related to the Core Continuous Integration CI Aspects

	4 Supported aspects
	4.1 Modeling Tools
	4.2 Other Tools
	4.3 Tool Evaluations

	5 Discussion
	6 Threats to validity
	7 Conclusions and future work
	8 Acknowledgements
	References



