
Abstract

For the development of complex software systems, two paradigms have become
popular in industry: model-based development and Agile software development.
In model-based development, models are the core development artifacts, par-
ticularly in early development phases such as specification and design. The
short development cycles of Agile development, and in particular continuous
integration, are sometimes seen as conflicting with the apparent longer develop-
ment phases in model-based development. We study how software development
can benefit from combining these two paradigms successfully into continuous
model-based development.

In this licentiate thesis, we present four papers studying continuous model-
based development of complex embedded systems in industry. The first two
papers present investigations of the current state-of-the-art and state-of-practice
of combining model-based development and continuous integration. In par-
ticular, specific challenges to the combination are identified. In the third and
fourth papers, we focus on one of those challenges: model synchronization,
i.e., the management of consistency between disparate development artifacts
describing the same system or parts of it. We propose a lightweight approach
that notifies developers of arisen inconsistency between different models. Lastly,
we consider the aspect of variability among different development artifacts.
In particular, we provide automated support for alleviating manual tasks in
maintaining consistency across model variants organized in a product line.
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Sammanfattning

Två populära paradigmer för utveckling av komplexa mjukvarusystem är modell-
baserad utveckling och agil mjukvaruutveckling. I modellbaserad utveckling är
modeller kärnartiklar för mjukvaruutveckling, speciellt för att uttrycka specifika-
tion och design. De korta utvecklingscyklerna i agil utveckling, i synnerhet vid
kontinuerlig integration, ses ibland som motstridiga med de längre utvecklings-
faserna i modellbaserad utveckling. Vi fokuserar på hur mjukvaruutveckling
kan dra nytta av att de två paradigmerna framgångsrikt kan kombineras till
kontinuerlig modellbaserad utveckling.

I denna licentiatavhandling presenterar vi fyra artiklar som studerar kontin-
uerlig modellbaserad utveckling av komplexa inbyggda system inom industrin.
De två första artiklarna presenterar undersökningar av den aktuella situatio-
nen och specifika utmaningar för att kombinera modellbaserad utveckling och
kontinuerlig integration. I den tredje och fjärde artikeln fokuserar vi på en av
dessa utmaningar: modellsynkronisering, det vill säga hanteringen av konsistens
mellan olika utvecklingsartefakter som beskriver samma system. Vi föreslår en
metod som informerar utvecklare när inkonsistens mellan olika modeller intro-
duceras. Slutligen undersöker vi variabilitet mellan olika utvecklingsartefakter
och presenterar ett automatiskt stöd för att förenkla det manuella arbetet att
upprätthålla konsistens mellan modellvarianter organiserade i en produktlinje.
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Samenvatting

Voor de ontwikkeling van complexe softwaresystemen zijn twee praktijken
breed omarmd: model-gebaseerde ontwikkeling en Agile softwareontwikkeling.
In model-gebaseerde ontwikkeling staan modellen centraal, in het bijzonder
in vroege ontwerpfases. De ontwikkelcycli in model-gebaseerde ontwikkeling
worden vaak gezien als lang en stug, en daarmee conflicterend met de korte
ontwikkelcycli in Agile methodes en nadrukkelijk continuous integration. We
onderzoeken hoe software ontwikkeling kan profiteren van een combinatie van
deze twee praktijken: continue model-gebaseerde ontwikkeling.

In deze licentiaat1 thesis presenteren we vier wetenschappelijke artikelen
die dit onderwerp onderzoeken in de context van ontwikkeling van complexe
embedded softwaresystemen in bedrijven die machines ontwikkelen waarvan
deze systemen deel uitmaken. De eerste twee artikelen presenteren onderzoek
naar de huidige standaarden en uitdagingen, zowel in de literatuur als in de
praktijk. In het derde en vierde artikel verleggen we de focus naar een van
die uitdagingen: modelsynchronisatie. Daarmee wordt bedoeld, het ervoor
zorgen dat verschillende artefacten (zoals modellen en programmacode), die
worden ontwikkeld om een systeem te ontwerpen en te implementeren, elkaar
niet tegenspreken. We stellen een “lichtgewicht” benadering voor, waarbinnen
ontwikkelaars melding krijgen van ontstane tegenstrijdigheden tussen verschil-
lende artefacten. Als laatste bijdrage in deze thesis ontwikkelen we automatische
ondersteuning voor het onderhouden van consistentie tussen modellen in een
productlijn, die varianten van een systeem beschrijven.

1Licentiaat is een Zweedse academische graad halverwege tussen een master (MSc) en een
doctor (PhD).
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Chapter 1

Introduction

In the development of modern embedded systems, most innovation comes from
software, leading to expressions like “this car runs on code” [1]. Hence, there has
been a lot of work aiming at improving the productivity of software development
and the quality of the resulting artifacts. We discuss two of the most prominent
paradigms that have been widely adopted to achieve those gains: Model-Based
Development (MBD) and Agile software development [2].

In MBD, models are used for the design of systems, and possibly for their
implementation too [3]. Within system design, it is beneficial to abstract some
of the implementation details away in favor of a more human-oriented view of
structure and functionality. Models can be used at all stages of the development
and for different purposes, from communication to the automatic generation
of code. In this work, we use the term MBD to refer to practices in which
models are used as core software development artifacts, meaning that the models
are expected to undergo frequent changes and the resulting implementation is
expected to be consistent with these models. We exclude from our scope those
MBD practices in which models are created for temporary documentation or
communication between stakeholders only. Note that this scope is thus much
wider than the UML-specific focus of the Agile Modeling (AM) paradigm
described by Ambler [4].

Since the publication of the Agile manifesto [2], software development has
increasingly focused on shortening development cycles. Ideally, customers
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4 Chapter 1. Introduction

are regularly presented with an enhanced implementation, allowing them to
adjust the requirements and thereby the product to their needs. Important
among the Agile practices is Continuous Integration (CI) [5], in which multiple
developers collaborate on a software project and each of them integrates her
work frequently into a shared repository. In the CI paradigm, an integration
is followed by an automated build as well as automated execution of a test
suite, giving the developers an up-to-date overview of the status of a project
throughout the development. This allows early detection of errors and prevents
a difficult integration period of uncertain length at the end of the project.

Benefits to the productivity of software development in industry have been
reported for both CI [6] and MBD [7], separately. Yet, the application of
both practices in combination in industrial development projects is sometimes
met with skepticism [8]. We hypothesize that combining MBD and CI into
continuous MBD can improve the productivity of software development. In this
work, we study the state-of-the-art, and the state-of-practice in several industrial
environments, to identify challenges to this combination. Thereafter, we provide
approaches to alleviate tasks that currently involve a large manual effort and are
thereby impeding the introduction of short development cycles.

In particular, we focus on tasks related to model synchronization, i.e., en-
suring consistency across various development artifacts, which is a general
challenge to MBD as well [9]. In a development setup where all artifacts are
code, a build system typically notices inconsistent definitions between different
portions of code. For example, the code will not compile when a class does
not implement all the methods defined in an interface. In MBD, it often occurs
that no formal links exist between artifacts, and consequently, these types of
inconsistencies might go unnoticed for a long time. The ultimate consequence
of this might be late changes to the implementation or even an incorrect imple-
mentation. When moving to Agile development, with its shorter development
cycles and aim of continuously integrating the development artifacts, keeping
them consistent becomes both more important and more challenging. Different
artifacts sooner rely on each other, and hence, inconsistencies may be propagated
faster across artifacts and can be more difficult to resolve. One way to address
this challenge is by frequently checking the consistency across artifacts, through
automated checking mechanisms.
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Many approaches have been presented to deal with inconsistency across
models. Existing approaches aim to satisfy different sets of requirements in
various settings. We study the problem in two industrial settings. From the first
of these, we obtain requirements for a consistency checking approach that can
support continuous MBD. This has resulted in an approach that is less expressive
and can not automatically resolve inconsistencies, but requires a lower effort
than existing approaches for defining and maintaining consistency checks.

In the above introduction of consistency checking, we have focused on
the consistency across different development artifacts that describe the same
system, possibly at different levels of abstraction. An additional dimension of
the problem emerges when the MBD setting also includes different variants of
the to-be-developed system. Typically, variability is managed using software
product lines [10], in which the development is based on structured reuse of
development artifacts across different product variants. To preserve the integrity
of the product line and the opportunities for reuse, those artifacts should be kept
consistent with each other. We study this aspect in a second setting, a model-
based software product line in which changes must be propagated between
models describing various derived products. As with the previously discussed
type of consistency checking, reducing the manual effort for this task is vital to
allow for shorter development cycles and eventually, continuous MBD.

Thesis outline This licentiate thesis contains two parts. Part I is an overview
of the thesis and is organized as follows. We first discuss our research process
and introduce research goals in Chapter 2, after which background and related
work to the thesis are discussed in Chapter 3. In Chapter 4, we provide an
overview of the included papers and the contributions brought by each of them.
In Chapter 5, we present conclusions and an outline of future work towards a
doctoral thesis. Part II includes the collection of included papers.





Chapter 2

Research Overview

In this chapter, we introduce the overall research goals of the thesis and how we
used both empirical and constructive research methods to achieve them.

2.1 Research Goals

The essence of MBD is to abstract from the implementation by capturing the
problem space in models [3]. We consider MBD to refer to development
practices in which models are created and maintained as core development
artifacts. That is, we require models to explicitly play a central role during
development and we require the implementation to conform to it.

Nevertheless, we include in our scope a broad range of MBD practices,
since not all artifacts have to be models. We also consider those development
settings in which graphical models play a smaller role, e.g. because textual code
is written manually. For “models”, we refer to system design, software design,
or software implementation models. These models can be expressed in various
modeling languages. Models may provide support for, e.g. automated analysis,
simulation, or code generation. Furthermore, different models can be used to
describe systems at different levels of abstraction. For example, a company may
use MBD to capture the system requirements and structure in a SysML [11]
model, whereas individual features are implemented in Simulink [12] models or
code.

7
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Figure 2.1. Three examples of possible artifacts in different model-based development
projects.

More examples of MBD settings are illustrated in Figure 2.1. In the figure,
we show three settings in which different models are used for the system view
and the software view. In setting 1 , the high-level system design is captured in
a SysML model; this model does not contain any implementation details, but
rather outlines the structure of the software as it is divided into components.
Furthermore, the system model deals with concerns on dividing functionality
across software components and hardware components. Hence, in this setting,
code is not automatically generated from the model. In setting 2 , we see that
part of the implementation is automatically generated, from Simulink software
models. The overall system design is again done in a SysML model and, addi-
tionally, Simulink models are created to design specific Software components.
Among these example settings, there is a common need for the artifacts to be
consistent with each other. Tool choices can vary across different settings too,
as is illustrated by setting 3 .

MBD promises to improve the productivity of software development [3].
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Indeed, among the reported benefits is a reduced total development time of
software systems [13]. However, MBD is traditionally viewed as “waterfall-
like”, with long development cycles and formal checks between each step in
the cycle. After the publication of the Agile manifesto [2] and the more recent
popularity gained by DevOps, short development cycles have become the norm
in software development. One of the first steps in the DevOps paradigm and
also one of the development practices promoted in Agile software development
is CI. Our focus on CI is motivated by the state-of-practice at industrial partners.
Due to the stringent safety requirements of their developed embedded systems,
companies typically do not continuously deliver, let alone continuously deploy
their software.

To illustrate continuous MBD and the CI activities on top of the existing
MBD activities, consider setting 2 from Figure 2.1. In the CI paradigm,
the SysML model is subject to frequent changes. As a consequence, also the
software models, in this example Simulink models, are subject to changes,
following the updated system model. Then, also the code is generated again,
following the changes to the Simulink models. As with code, also modeling
artifacts should be integrated into a shared repository. The automation facilities
of the CI pipeline can then be utilized to provide insight into the developed
artifacts, for example through simulating the models or automatically analyzing
them. The intended result of continuously integrating models too is to accelerate
the feedback loop to developers, for example by allowing frequent inspection of
the adherence of the code to the intended design.

To summarize, both the MBD and CI paradigms separately give improved
productivity in software development; and their combination can yield additional
benefits. Therefore, we propose to enhance existing MBD practices with CI
features. To this end, we formulated our first research goal as follows:
RG1: To identify impediments towards the adoption of continuous integration
in model-based development.

Towards achieving this research goal, we first identified the state-of-the-
art and state-of-practice of the combination of MBD and CI. In particular, we
investigated existing MBD practices in the development settings at our industrial
partners and identified improvement opportunities for them. As a result, we
found the need to automate some of the labor-intensive manual tasks in MBD,



10 Chapter 2. Research Overview

so that more frequent development iterations could be established. This resulted
in the second research goal, which instead aimed at identifying actions that
are currently performed manually and that would need to be at least partially
automated to eventually make more frequent development iterations possible
and beneficial. Our second research goal was:
RG2: To alleviate labor-intensive manual tasks that impede the adoption of
short development iterations in industrial MBD settings.

2.2 Research Methodology

An old critique of software engineering research in a new guise states that
“most software engineering research has the same effect on programmers that
astronomy has on stars” [14]. The research community recognizes the limited
practical relevance of software engineering research and suggests industry-
academia collaborations as one of the means to improve it [15]. We performed
our research in close collaboration with industrial partners through Software
Center1, an organization featuring 5 Swedish universities and 15 companies
collaborating in software engineering research projects. The research presented
in this thesis is the result of collaborations with three of the Software Center
member companies, as well as two external companies.

Our research was performed in 6-month “sprints”, following the commonly
recommended best practice for industry-academia research collaborations of
organizing the research in iterations so that research topics can frequently be
fine-tuned to maximize their relevance [16]. Each of these sprints was started
with a research proposal agreed upon with the partner companies. At the end
of each sprint, research directions for the next sprint were proposed and results
were presented in a joint workshop open to all companies in Software Center.

The iterative nature of our research process is closely related to the well-
known constructive research methodology [17]. This methodology describes
the common practice in software engineering research of creating knowledge by
constructing solutions to well-defined problems. To identify a well-defined prob-
lem, constructive research is often preceded by empirical studies investigating

1https://www.software-center.se/
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Figure 2.2. Overview of our research process

the state-of-the-art and the state-of-practice [17].
In this thesis, we present two papers (Paper A and Paper B) presenting empir-

ical studies reporting on the state-of-the-art and state-of-practice of continuous
MBD, addressing RG1. The other two papers (Paper C and Paper D), present
the construction of new approaches in collaboration with our industrial partners,
addressing RG2. Organizing the research in sprints has allowed us to use the
results from Paper A and Paper B for refining RG2 and for creating specific
research projects for Paper C and Paper D. Notably, the findings of Paper A and
Paper B show a lack of automated support for model synchronization, impact
analysis, and co-evolution. These results have then inspired the work leading to
Paper C, which targets support for consistency checking in a continuous MBD
setting, and Paper D, which targets impact analysis and co-evolution in another
industrial MBD setting. Figure 2.2 summarizes our research process in terms of
the contributions and their interdependencies.

The aforementioned process describes the relation between our research
goals and contributions. While the work addressing both research goals involved
industrial partners, RG1 aimed at identifying general research problems in the
area, whereas RG2 aimed at proposing an approach in specific industrial settings.
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Therefore, in Paper A and Paper B, we used empirical methods [18] to capture
the state-of-practice and identify the requirements for a new approach.

In Paper A, we describe the state-of-the-art by comparing the most-used
COTS modeling tools in industry. Existing state-of-the-art literature reviews
on the combination of Agile development and MBD, e.g. [19], tend to agree
on high-level challenges such as tool immaturity and steep learning curve of
MBD. We complement this knowledge by providing insights into available
tooling, the features they support, and their shortcomings. For similar reasons,
in Paper B, we conducted an interview study with practitioners. Our main
objective was to identify diverse states of practice and identify open research
challenges related to them. To obtain insights complementing existing literature,
we involved practitioners from our partner companies. We performed semi-
structured interviews [20] to provide interviewees the opportunity for personal
input, while still ensuring to discuss a set of pre-defined topics.

To address RG2, we further extended the empirical work using constructive
research, in which we proposed approaches within concrete industrial settings.
In this way, the collaboration differed from that in Paper B, which included
interviews with engineers from several companies. Both the collaborations for
Paper C and Paper D started by defining research goals for which the results of
Paper A and Paper B were used as input. Upon the definition of research goals,
the collaborations continued with several iterations of proposals for an approach
to address the goals. Once a promising way forward had been identified, we
then implemented the approach and lastly validated it.

In Paper C, we developed an approach for making developers aware of
inconsistencies between models. We presented a prototype implementation and
an evaluation of the approach on a limited use-case. Our evaluation indicated
new requirements for a lightweight consistency checking approach. The results
represent the first step towards an industry-level approach.

In Paper D, we worked in a setting in which variants of products are devel-
oped using models. We developed an approach for propagating changes from the
product line to derived products. The study considered a model-based product
line setting in industry, thereby making it a different setting than studied in
Paper C. Hence, Paper C and Paper D are denoted in Figure 2.2 as independent
papers, both originating from RG2.



Chapter 3

Background and Related Work

This chapter contains background information and related work to the work
presented in this thesis.

3.1 Model-Based Development

Several names and corresponding acronyms are in use to describe the notion
of using models as key software development artifacts. Common ones in-
clude model-driven engineering (MDE), model-based development (MBD), and
model-based software engineering. In our work, we refer to MBD, to emphasize
that models are core development artifacts but the development includes also
other artifacts such as textual documentation or code.

Figure 3.1 illustrates the four layers of the modeling stack as originating
from the object management group (OMG) core specification [21]. The bottom
layer (M0, object layer) represents the real world, each of the three layers above
it represents an abstraction of the layer below that layer. The first layer above the
bottom, layer M1, contains models of the real world. At this point, it should be
noted that the real-world layer can also house artifacts such as code, so M1 could
contain e.g. a UML class diagram as an abstraction of some implementation. M2,
contains so-called meta-models, which denote the type of constructs that can be
used to express models in M1. UML itself is an example of a metamodel. M3,
provides meta-metamodels, the final abstraction layer since a meta-metamodel

13
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Figure 3.1. Layers of the modeling stack

describes not only instances at M2 but also itself. Examples of meta-metamodels
include Meta Object Facility (MOF)1 and Ecore2. Our work is mostly concerned
with instances at M1 level and instances at M0, but must take into account also
M2, since different instances of M1 might conform to different instances of M2.

Model-to-model transformations can be created to convert models conform-
ing to one metamodel into models conforming to another metamodel. For this
purpose, specialized model transformation languages have been developed, such
as ATL3 and QVTo4. Also, model-to-text transformations can be created, e.g. to
generate code from models. Some modeling tools include such transformations
and thereby support for code generation from their models.

3.1.1 Model-based systems engineering

In model-based systems engineering (MBSE), a diagrammatic system model is
used as the central artifact containing architecture and design, thereby replacing
textual documentation. The best-known language supporting this paradigm
is the Systems Modeling Language (SysML), which is an extended subset of
UML [11]. SysML provides a modeler with several diagrams to describe the
requirements, structure, and behavior of a system [22]. Although these diagrams

1https://www.omg.org/mof/
2https://wiki.eclipse.org/Ecore
3https://www.eclipse.org/atl/
4https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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may still be complemented with textual descriptions, the idea of MBSE is that
the system model forms the central development artifact. This ideally enables
the automatic generation of source code and documentation from the system
model. In practice, automatic generation of code is not always done because
it requires the model to be completed down to a very low level of abstraction,
i.e., to contain a great amount of detail. Among our industrial partners, we have
encountered MBSE practices in which the system model is rather a guide for
the manual development of code from it. Nevertheless, also in these practices,
the eventual implementation is required to be consistent with the system model,
in the sense that these two descriptions of the system should not contradict each
other.

3.1.2 Model-based product lines

When developing software systems, companies may need to express different
versions of that system that vary on certain points. To manage this type of
variability, software product line engineering (SPLE) prescribes an organization
of development artifacts in product lines [10]. Various structured ways of
establishing product lines are known in the literature. On the other hand, clone-
and-own is an unstructured practice in which reuse is initially organized through
copy-and-paste [23].

We refer to software product lines in which models are central development
artifacts as model-based product lines. In general, software product lines are
organized as one central development “line” from which product variants can
be derived. Changes in the main product line may need to be propagated to
those derived variants, for example in case of bug-fixes. The changes that
need to be propagated are typically smaller than complete files. When the
development artifacts are text-based, files can in most cases be merged to achieve
the propagation. In model-based product lines, diagrammatic models may need
to be merged, which is notoriously challenging. Moreover, the localization of
the part of the model that requires propagation is not straightforward. In Paper D,
we study this problem in an industrial setting.
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3.1.3 Adoption of MBD in industry

Towards achieving our first research goal (RG1), we identified challenges in
combining MBD and CI. Some of the resulting challenges are shared with gen-
eral challenges to the introduction of modeling practices in industry, which are
reported plentiful in the literature (e.g. [24]). For example, tool interoperability,
tool usability, and a steep learning curve are usual suspects among reported
challenges to the industrial adoption of modeling. Furthermore, challenges
are not limited to tooling issues, also human factors must be considered [25].
Despite being well-known for years, these remain open research challenges [9].

Our results offer a new perspective on these known challenges. We study
those settings in which MBD has already been introduced and propose ways
to make them more continuous. We expect the different perspectives to yield
complementary findings and thus we also expect our results to improve the
adoption of MBD in industry.

3.2 Agile software development

The manifesto for Agile software development [2] aims for customer satisfaction
through frequent delivery of working software. The main effect of adopting the
practices outlined in the manifesto is that development cycles become shorter,
thereby allowing for frequent course adjustments. A fundamental ingredient for
achieving this is Continuous Integration (CI) [5]. In the “stairway to heaven”
model, CI is the third step on the evolution path from traditional engineering to
continuous deployment [26].

3.2.1 Continuous Integration

In Paper A, we define CI as: “a collaborative development practice where
software engineers frequently, at least daily, integrate their work into a shared
repository.” Besides enabling frequent deliveries of the software to clients, CI
also prevents the need for a complex integration period after the implementation
of all parts, which can be hard to plan for and take exceedingly long to complete.
As can be seen from the definition, CI is concerned only with the development
of software. The next stage is then to frequently release versions of the software
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(continuous delivery). Continuous delivery in turn can be followed by frequently
deploying the releases on customer devices (continuous deployment). Figure 3.2
illustrates these phases. Further extensions of the continuous development
paradigm are made in DevOps (Development and Operations), in which data
of the usage of the deployed software is used as input for new development
iterations [27]. In this thesis, we focus only on continuous integration, not the
subsequent stages.

Build  Test   Release   Deploy  Develop

Continuous 
 Integration

Continuous 
Delivery 

Continuous 
Deployment 

Figure 3.2. Stages of continuous development.

3.2.2 Agile model-driven development

Under the term Agile model-driven development (AMDD), several authors
have presented work towards introducing Agile practices while using models
as core development artifacts. Zhang et al. [28] have presented benefits of
combining the two paradigms from experiences at Motorola. They present
how their development processes were set up to allow for shorter development
cycles, continuous integration, and frequent testing. Other case studies also
find the potential benefits of applying Agile practices in MBD [29]. Rumpe has
presented research results on Agile model-based software engineering using
(executable) UML, presenting challenges such as model management, model
composition, refactoring, and model quality [30]. Lano et al. [31] also advise
a process to follow when combining Agile and modeling practices, among
their tips are to do regular integration and testing. Another case study shows a
successful adoption of Agile MBD and highlights the close coupling of software
development with physical systems as a challenging aspect [32]. The authors
address that challenge by using plant models to enable a virtual test environment,
rather than relying on sparsely available physical systems, thereby contributing
to shortening development increments in their model-based development. Given
these experiences, there seems to be support for our hypothesis that MBD
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and Agile in combination can improve development productivity. This notion
is supported by the MDE research community, which has identified making
modeling more Agile as one of the current research challenges [9].

We limit our focus to continuous integration (CI), one of the key practices
in Agile development. Some recent work has been published towards methods
and processes enabling the combination of MBD and CI. The most important
of those works consider more involved modeling practices, in which models
are the only development artifacts and code is generated from them. Hence,
the problems they identify are closely related to that way of working. Gatcía-
Díaz et al. identify model versioning and incremental artifact generation as two
problems in combining modeling and CI [33]. Considering a similar level of
involvement of models, Garcia and Cabot propose to utilize the continuous
delivery pipeline to deal with the co-evolution of models, metamodels, and
model transformations [34]. The authors propose to chain existing activities and
tools using the automation capabilities of Jenkins5.

3.3 Consistency Management

The detection and resolution of inconsistencies within or between different
diagrams of the same model (intra-model consistency checking) or between dif-
ferent models (inter-model consistency checking) have been studied extensively.
In this research, we focus on inter-model consistency checking. In particular,
in Paper C, we consider consistency between different views of a system, cap-
tured in different models that are potentially created using different modeling
languages and in different tools. In Paper D, we consider consistency between
different models describing system variants.

3.3.1 Relevance of consistency checking

The importance of consistency in the development process is undisputed [35]
but despite the considerable amount of work on model synchronization, it is still
considered an obstacle to industrial adoption of MBD [36]. Industrial evaluations
of multi-view modeling and its consistency problems are lacking [37], perhaps

5https://jenkins.io/
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because of the complexity and scale of those environments. Selic identifies
the scale of industrial applications as one of the main challenges to overcome
for a model synchronization approach to be applicable [38]. In particular, he
argues that in many cases the number of consistency links is huge, resulting in
a large maintenance effort that is at constant risk of being neglected in favor
of more pressing issues [38]. Another often identified challenge is a lack of
tool interoperability in MBD [24], which naturally complicates the type of
consistency management we are interested in. Indeed, creating traceability
links between different models is required for effective tool interoperability and
consistency between models [39].

Several attempts have been made to define consistency. Some of them tried
to mathematically define [36] or create an ontology of possible inconsisten-
cies [40, 41]. To arrive at a common definition, we state that views that express
overlapping concerns are inconsistent when they contradict each other [42].

3.3.2 Consistency checking approaches

We now discuss several categories of existing consistency checking approaches
and reflect on the existence of so many approaches while at the same time, many
new approaches are still proposed.

Instant Model Synchronization

A significant amount of work has been done on approaches that promise the
automatic maintenance of consistency between views. Approaches based on
Triple Graph Grammars (TGGs) [43] or Single-Underlying Model (SUM) [44]
establish a bidirectional transformation between different diagrams, thereby
ensuring instant propagation of changes across different views of the system.
Furthermore, there are many other proposed mechanisms for model synchroniza-
tion, such as keeping models synchronized given a synchronized situation and
traceability links [45], or automatic bidirectional synchronization derived from a
one-directional model transformation [46]. Also, a hybrid approach is proposed,
in which model transformations are generated for change propagation between
views based on model difference, based on a common underlying meta-model
for all views [47].
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In our studied industrial settings, these model synchronization mechanisms
are typically not applicable. The first possible obstacle is the aforementioned
difference in detail captured in different models, which is particularly apparent in
the described case of keeping a system model and code consistent. Furthermore,
high-level system models are typically “modeling the future”, i.e. the high-level
models aim to describe the final product, whereas the code always represents
the latest state of development. Therefore, the code is not expected to always
conform to the latest version of the model. That also means that we don’t
want to automatically propagate (or at least not yet) changes in the high-level
model. Another key reason is that we need to support the iterative and flexible
development process in industry. Changes are not always definitive or fully
completed. Some developers may include temporary placeholder snippets in
models or code that are known to be inconsistent with other artifacts but will be
resolved in later stages. In such cases, it makes no sense to try to synchronize
the models, but it does make sense to make developers aware of the introduced
inconsistency so that it is not forgotten about. Also, there may be artifacts we
do not control, because they are third-party, open-source, or re-used from other
projects. Specifically, for the SUM approach, the consequence is that some
views are “read-only”, i.e., they can not be changed. But furthermore, this
reading may not be trivial at all, because the view could be expressed in any
modeling or programming language. For these reasons, we try to formulate
an approach not aimed at completely synchronizing models, but rather at an
approach that allows inconsistencies but notifies the engineers when they are
introduced. This follows established inconsistency tolerance ideas, which state
that inconsistency must be to some extend tolerated during development such
that development is not inhibited [48].

Other formalisms

Some other formalisms for detecting inconsistencies rely on common represen-
tations for different models. For example, Diskin et al. [49] propose to merge
graph representations of heterogeneous models and then use the resulting single
typed graph to detect inconsistencies. This approach is also an example of
representing models as graphs. In another proposed approach, models are repre-
sented as graphs denoting logical facts about the models [50]. Similar to the first
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approach, the graphs are then used to derive contradictions. Other approaches
have been proposed in which models are represented by the operations that are
needed to construct them. After this representation step, logical rules are defined
to detect inconsistencies between the models [51].

Reflection

It is noteworthy that, although inconsistency challenges have been studied for
many years, there are still research articles being published on the topic, which
is still considered to be very challenging to achieve in industry. The result is that
all proposed approaches are created with a certain set of requirements in mind
that are identified as required for adoption in some particular industrial practice.
Consistently, we do not pretend that our approach is universally applicable and
somehow better than all the other proposed approaches of the past. Rather, we
identified our own set of requirements induced by the industrial settings under
study and have proposed an approach for meeting those requirements.





Chapter 4

Research Results

In this chapter, we discuss the results of our research. We first present the
contributions of the thesis and how they were validated. Then, we highlight the
specific contributions brought by each of the four included papers.

4.1 Thesis Contributions

This thesis presents the following three research contributions.

• C1: Identified challenges of combining MBD and CI.

• C2: An approach for lightweight inter-model consistency checking in
continuous model-based development.

• C3: An approach for alleviating the change propagation process in a
model-based product line.

A mapping of contributions to research goals is shown in Table 4.1.

4.1.1 C1: Identified challenges towards combining MBD and CI

C1 is brought by Paper A and Paper B in which we identified the state-of-the-art
in modeling tools, the state-of-practice at several companies, and challenges
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Table 4.1. Mapping of contributions to research goals.

RG1 RG2

C1 X
C2 X
C3 X

towards combining MBD and CI. In the aspects of integration, building, testing,
and overall automation, several relevant practices for continuous MBD were
identified. We divided the identified challenges into the following categories:
human, business, non-functional, and functional. Although these challenges
are not specific to continuous MBD, some of them become more troublesome
when adopting shorter development cycles. In our research, we focused on those
challenges and in particular on model synchronization.

Another interesting result was discovering some MBD projects in which the
adoption of CI was not seen as a good idea. This seemed to stem mostly from
the existence of many manual steps in the current process, which are not easily
performed at a higher frequency. Moreover, we found that those among our
industrial partners that are most mature in the adoption of MBD and CI develop
all their models in one single tool. This is done to avoid some of the most
intimidating challenges, like tool interoperability and model synchronization.

Validation: The two papers forming this research contribution report on em-
pirical findings on challenges in continuous MBD. To ensure the validity of these
findings, several measures were taken in the design of these studies, such as
ensuring a sampling of study subjects working in different roles and at different
companies. More details are provided in Paper A and Paper B.

4.1.2 C2: Lightweight Approach to Consistency Management

Model synchronization, in particular managing consistency between different
artifacts, arose as one of the core challenges. Hence, we studied inter-model
consistency checking in industrial settings and proposed an approach for their
lightweight management, within a continuous integration pipeline. This contribu-
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tion is described in Paper C, which presents an approach to manage consistency
between heterogeneous artifacts as well as a tool for a CI pipeline. We have
contributed to the existing state-of-the-art and practice by focusing both on the
continuous aspect of the consistency checks and their required “lightweightness”
for usage in industrial settings. Despite their lightweight nature, our consistency
checks still give useful information on structural inconsistencies.

Validation: The approach and functionality of the tool have been evaluated
using an example system commonly used in the relevant literature. To evaluate
the other important aspects related to usability and applicability in practice,
an evaluation with industrial partners is planned as future work. In fact, we
are currently working with an industrial partner on establishing these types of
consistency checks between their system model and corresponding code-base.

4.1.3 C3: Change Propagation in a Model-Based Product Line

This thesis contribution is carried by Paper D. It addresses MBD settings in
which multiple variants of software are developed in a clone-and-own product
line. In such settings, changes in the product line may need to be propagated
to derived products. Significant effort is spent on the analysis of the impact of
changes in the product line on derived products. Our contribution is an approach
for semi-automating the change propagation. We identified two benefits of our
approach: (i) the analysis and change propagation process is simplified, and (ii)
the approach can be used to move from a clone-and-own product line to a more
structured organization of reuse across variants.

The domain expertise of developers is required to make decisions on change
propagation since these choices depend on the requirements of the different
products. Therefore, we instead identified the tasks with the most manual effort
and provided techniques to automate those.

Validation: We evaluated the approach using publicly available models. Also,
we report on qualitative results in terms of experiences of applying the proposed
approach to industrial models.
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4.2 Paper Contributions

Below we list abstracts and brief descriptions of the contributions of the included
papers. A mapping of research contributions to included papers is shown in
Table 4.2.

Table 4.2. Mapping of research contributions to included papers.

PA PB PC PD

C1 X X
C2 X
C3 X

4.2.1 Personal Contributions

I have been the main author and driver of the work for all included papers.
The co-authors have been involved in all works through brainstorming and
discussions. Furthermore, they have provided feedback on drafts of the papers.

4.2.2 Included Papers

Paper A: Continuous integration support in modeling tools.
Abstract: Continuous Integration (CI) and Model-Based Development (MBD)
have both been hailed as practices that improve the productivity of software
development. Their combination has the potential to boost productivity even
more. The goal of our research is to identify impediments to realizing this
combination in industrial collaborative modeling practices. In this paper, we
examine certain specific features of modeling tools that, due to their immaturity,
may represent impediments to combining MBD and CI. To this end, we identify
features of modeling tools that are relevant to enabling CI practices in MBD
processes and we review modeling tools with respect to their level of support
for each of these features.
Paper contributions: Although the results are not surprising, the work con-
tributes to the body of knowledge on impediments towards adopting CI in MBD.
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Further, it strengthens some conclusions made previously by others that have
indicated impediments such as tool interoperability and model versioning.

Paper B: Impediments to Introducing Continuous Integration for Model-
Based Development in Industry
Abstract: Model-based development and continuous integration each separately
are methods to improve the productivity of development of complex modern
software systems. We investigate industrial adoption of these two phenomena
in combination, i.e., applying continuous integration practices in model-based
development projects. Through semi-structured interviews, eleven engineers at
three companies with different modeling practices share their views on perceived
and experienced impediments to this adoption. We find some cases in which
this introduction is undesired and expected to not be beneficial. For other cases,
we find and categorize several impediments and discuss how they are dealt with
in industrial practice. Model synchronization and tool interoperability are found
the most challenging to overcome and the ways in which they are circumvented
in practice are detrimental for introducing continuous integration.
Paper contributions: The main contribution of this work is the finding that,
in some of the studied settings, current practices actively inhibit companies
from developing in shorter development cycles. We identify those practices and
discuss how they are impeding the adoption of CI.

Paper C: Lightweight Consistency Checking for Agile Model-Based Devel-
opment in Practice.
Abstract: In model-based development projects, models at different abstraction
levels capture different aspects of a software system, e.g., specification or design.
Inconsistencies between these models can cause inefficient and incorrect devel-
opment. A tool-based framework to assist developers creating and maintaining
models conforming to different languages (i.e. heterogeneous models) and
consistency between them is not only important but also much needed in prac-
tice. In this work, we focus on assisting developers bringing about multi-view
consistency in the context of agile model-based development, through frequent,
lightweight consistency checks across views and between heterogeneous models.
The checks are lightweight in the sense that they are easy to create, edit, use and
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maintain, and since they find inconsistencies but do not attempt to automatically
resolve them. With respect to ease of use, we explicitly separate the two main
concerns in defining consistency checks, being (i) which modeling elements
across heterogeneous models should be consistent with each other and (ii) what
constitutes consistency between them. We assess the feasibility and illustrate
the potential usefulness of our consistency checking approach, from an indus-
trial agile model-based development point-of-view, through a proof-of-concept
implementation on a sample project leveraging models expressed in SysML
and Simulink. A continuous integration pipeline hosts the initial definition and
subsequent execution of consistency checks, it is also the place where the user
can view results of consistency checks and reconfigure them.
Paper contributions: Many approaches for checking inter-model consistency
exist. The contribution of this work is an approach for checking inter-model
consistency that is explicitly lightweight, i.e., easy to use and deploy in industrial
settings. Furthermore, the approach is generic, it can be applied to any modeling
language with a hierarchical structure that can be mapped onto a tree structure.
It represents a first step towards creating a lightweight consistency checking
approach that supports more types of structural consistency and can deal with
the evolution of the involved models.

Paper D: Co-evolution of Simulink Models in a Model-Based Product Line.
Abstract: Co-evolution of metamodels and conforming models is a known
challenge in model-driven engineering. A variation of co-evolution occurs in
model-based software product line engineering, where it is needed to efficiently
co-evolve various products together with the single common platform from
which they are derived. In this paper, we aim to alleviate manual efforts during
this co-evolution process in an industrial setting where Simulink models are
partially reused across various products. We propose and implement an approach
providing support for the co-evolution of reusable model fragments. A demon-
stration on a realistic example model shows that our approach yields a correct
co-evolution result and is feasible in practice, although practical application
challenges remain. Furthermore, we discuss insights from applying the approach
within the studied industrial setting.
Paper contributions: To handle variability across different versions of devel-
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oped software, product lines are adopted in industrial practice, often through
clone-and-own reuse. This causes a lack of traceability and systematic re-use
between variants. In this paper, we aid the hitherto manually performed process
of propagating changes made in the product line to derived products. We do not
anticipate the process to become completely automated in the future, but we
expect this to be a step towards providing more automated means of analysis to
help domain experts in their design decisions.
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Conclusion

In industrial practice, a broad range of MBD settings can be encountered. Across
these settings, models are used at different levels of abstraction and in combi-
nation with various other types of artifacts. By advancing continuous MBD,
we aim to allow companies to adopt shorter development iterations and faster
feedback on their model-based designs.

This thesis presents three contributions to this goal. We first identified
the challenges of combining MBD and CI. Then, we presented an approach
for lightweight inter-model consistency checking in continuous model-based
development. Finally, we presented an approach for alleviating the change
propagation process in a model-based product line.

Both proposed approaches address model synchronization, a key challenge
in establishing continuous MBD. However, holistic support for continuous MBD
requires more improvements to functional aspects such as model synchronization
and tool interoperability, as well as to process aspects such as collaborating on
models and insight into quality metrics.

5.1 Future Work

In future research, we aim at extending and supplementing the presented ap-
proaches, and at addressing more of the identified challenges in various MBD
settings, thereby further advancing continuous MBD in industry.

31
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Extensions of approaches in this thesis. We are currently working on an
industrial evaluation of the approach presented in Paper C. This might also lead
to further refinements of the approach to ensure its lightweight nature. One of
the starting points of Paper C is that the manual definition of traceability links
across artifacts requires too much manual effort. We plan to further improve
on our proposed approach in Paper C by establishing automated traceability
link discovery methods. In early work towards this goal, we are working on an
approach that uses information on the known structure of the model and naming
conventions in model and code. Using these inputs, we aim to provide accurate
suggestions for traceability links across artifacts.

The work of Paper D is planned to be extended with automated support for
suggesting changes to test cases upon a change to a model. In the current setting,
the majority of the test development effort is spent on ensuring test cases are
still up to date after the model they cover is updated. To alleviate that effort,
support for assessing the impact of model changes on test cases is needed in the
first place. In the second place, for specific kinds of changes, these assessments
may be improved by suggesting changes to the test cases that would synchronize
them with the model again. We aim to combine this with our current work to
establish a faster development cycle for models, their variants, and their test
cases. This is an important step towards establishing continuous MBD in the
model-based product line setting.

Support the functional aspects of continuous MBD. Additionally, we plan
to address challenges identified in Paper A and Paper B that were left unsolved.
In general, we work towards the goal of supporting continuous MBD in various
settings. To do so, our current results need to be extended in the area of model
synchronization and model management tasks. The latter includes e.g. auto-
mated analysis for change impact analysis, and model differencing and merging
for parallel development by multiple, possibly geographically distributed, devel-
opers. Approaches to those challenges should furthermore be compatible with
the continuous integration paradigm.

In Paper D, we incorporated the aspect of developing software variants.
Variability is typically organized in software product lines, which can be used
in MBD too. Models and parts of models can be re-used across different
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product variants. An emerging challenge is then to manage both the dimensions
of variants and revisions of these models. This is particularly pressing in
component-based systems, where variation occurs on three levels since 1) the
components themselves exist in different variants (or alternatives), 2) across
systems, various configurations of multiple components are in use, and 3)
there are various systems expressed using these components and configurations.
On top of that, these variants all exist in different revisions through time. A
first challenge is then to optimize the way of modeling such systems to avoid
duplication of volatile information. Furthermore, consistency checking methods
are needed that are aware of these dimensions and can appropriately check
consistency between the appropriate versions of different artifacts.

Supporting the continuous MBD process. Supporting continuous MBD
would require, in addition to solutions to technical challenges, also improve-
ments to tooling that supports the development process of teams of developers.
For code-based software development, mature tools are available for supporting
activities such as code reviews and issue reporting. Mature continuous MBD
practices require such supporting tooling too, that furthermore is model-aware.

Another need in industrial practice is to get insight into the quality devel-
opment artifacts. In continuous MBD, these metrics should be defined and
measured across different artifacts, instead of being scoped to single models
or code. In this context, consistency is merely one quality metric among the
typically six: correctness, completeness, consistency, comprehensibility, con-
finement, and changeability [52]. The continuous integration pipeline could be a
good host for the calculation and presentation of quality metrics, as is typically
done in dashboards for code-based software development projects.

5.2 Summary

In this thesis, we have presented contributions that are aimed at advancing con-
tinuous MBD. We have shown different setups of continuous MBD, one in which
the continuous integration pipeline is utilized to include inter-model consistency
checking. In Paper A and Paper B, we identified challenges to continuous MBD
and in Paper C and Paper D, we presented approaches to alleviating two of these
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challenges. The challenges have been identified through an investigation of
state-of-the-art modeling tools and their support for continuous integration, as
well as interviews with industrial MBD practitioners.

The proposed approaches are a lightweight consistency checking method
and an approach to assist in change propagation within a product line. The two
approaches have been defined in diverse MBD settings and in collaboration with
industrial partners from different domains. Both approaches reduce the needed
manual effort, which otherwise inhibits the adoption of short development cycles
and, ultimately, continuous MBD.
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Abstract

Continuous Integration (CI) and Model-Based Development (MBD) have both
been hailed as practices that improve the productivity of software development.
Their combination has the potential to boost productivity even more. The goal
of our research is to identify impediments to realizing this combination in
industrial collaborative modeling practices. In this paper, we examine certain
specific features of modeling tools that, due to their immaturity, may represent
impediments to combining CI and MBD. To this end, we identify features of
modeling tools that are relevant to enabling CI practices in MBD processes and
we review modeling tools with respect to their level of support for each of these
features.
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6.1 Introduction

In this work we couple two concepts: Continuous Integration (CI) and Model-
Based Development (MBD). CI refers to a subset of the Agile development
practices as described by Martin Fowler [1]. Several empirical evaluations
have shown the positive effects of CI on productivity in industrial software
development projects [2, 3]. The MBD paradigm holds the promise of increased
productivity of development teams by raising the level of abstraction from code
to models [4]. The benefits of MBD on productivity have been empirically
assessed in industrial settings too [5, 6, 7].

We hypothesize that CI practices can further improve the productivity of
MBD. In our research, we aim at identifying impediments to realizing these
practices in industry. Eventually, although not in the scope of this paper, we aim
at resolving them, thereby contributing to the maturity of collaborative modeling
practices.

In this work, we focus on technical challenges towards introducing CI
practices in MBD. We examine modeling tools to identify particular features that
are commonly underdeveloped and thereby may represent potential impediments
to combining CI and MBD. In particular, we answer the following research
questions:

1. What are relevant features for a modeling tool to be able to support CI
practices?

2. To what extent are these features provided in current modeling tools?

In the remainder of this introduction, the concepts of CI and MBD are de-
scribed in more detail. The rest of the paper is organized as follows. Section 6.2
outlines related reviews of modeling tools. The first research question is an-
swered in Section 6.3. In Section 6.4, the second research question is answered.
The results are discussed in Section 6.5. Threats to the validity of our work are
outlined in Section 6.6 and the conclusions are provided in Section 6.7.

6.1.1 Continuous Integration

CI is one of the twelve Extreme Programming (XP) practices [1]. In turn, XP
is one of the elements of the software development concepts published in the
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Agile manifesto [8]. Since then, various practices regarding the frequency and
level (e.g. the entire system, a sub-system or an own branch) of software integra-
tions have been developed [9]. The terms Continuous Integration, Continuous
Deployment and Continuous Delivery are sometimes used interchangeably [10].
An unclear definition and interchangeable use of the terms may lead to their
devaluation [11]. Therefore, we refer to the definition of Continuous Integration,
given by Fowler [1], as follows:

Definition 1. Continuous Integration is a collaborative development practice
where software engineers frequently, at least daily, integrate their work into a
shared repository. After each integration, an automatic build is performed. On
successful build, automated tests are performed.

In MBD, this integrated work consists of models and other modeling arte-
facts in addition to code. This may pose additional challenges, such as differ-
encing on model level, that are not encountered when applying CI practices in
conventional software development projects.

6.1.2 Model-Based Development

We use the term Model-Based Development (MBD) to denote modeling practices
in which models are used to capture functionality and possibly to generate code.
Rios et al. distinguish five maturity levels of modeling practices [12]. The levels
range from ad-hoc to ultimate and describe immature to complete modeling
practices. Since our goal is to introduce CI practices in MBD, it does not make
sense to consider the first level, which describes immature modeling practices
where models are only used by individuals for e.g. design or documentation.
Instead, we are interested the more advanced levels of modeling practices where
models are used by multiple team members and the eventual code or application
derived from the models must be consistent with these models.

6.2 Related work

Since the publication of the agile manifesto in 2001, research on combining Ag-
ile and modeling practices [13], has been performed. Evidence-based software
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engineering studies of the field have shown that Agile modeling is not a mature
field yet [14, 15]. In particular, these studies identify the need for more reports
on Agile modeling practices in industry.

Although Agile modeling is a topic treated in several research articles and
CI is named as a needed practice in modeling [16], we have only found few
that go into the details of the Agile practice of CI in combination with MBD.
García-Díaz et al. identify four problems in applying CI practices in an MBD
project [17]. Among these problems, the two most interesting in relation to
CI (as we will see later in Section 6.3) are version control systems for models
and incremental code generation. Additionally, they stress the importance of
uniform, user-friendly interfaces and the variability of technologies in different
phases of the pipeline. They build and evaluate a prototype solution to resolve
these identified problems in an MBD project. This solution focuses on modeling
approaches where models are used to generate 100% of the code for an appli-
cation, whereas we consider also modeling approaches where only parts of the
code are generated.

Some work has been done towards a build server for MBD [18]. The authors
identify the need to support verification and validation of models. Furthermore,
they argue the need for build tooling to support a mix of automatic and manual
actions.

Recently, early work towards resolving impediments to combining Con-
tinuous Delivery and MBD was presented [19, 20]. The authors identify the
main technical impediment to be the model-awareness of the integration server.
Furthermore, they remark that for all typical MBD activities, tools that can be
included in a pipeline are available. Our approach looks at this from a different
perspective; we explore modeling tools and then consider the possibilities to
introduce CI practices.

Naturally, there are aspects of MBD in general, not just the combination of
CI and MBD, that are relevant to its adoption in industry. The impediments may
be technical or be related to organizational factors of the software development
process. Tooling is one of the aspects preventing a more wide-spread adoption
of MBD in industry; another is the lack of clear processes to support develop-
ment [21]. There are numerous organizational challenges that, if not properly
tackled, hinder agility in MBD [22]. Other impediments to the adoption of MBD
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that are highlighted in literature are the lack of tool interoperability [23], and the
steep learning curve for developers [5, 22]. Furthermore, impediments might
lie in development processes of companies and the required time and money
investments to change these. Technical challenges include poor scalability of
the modeling practice in general in large industrial applications of MBD [5].
Related to these are automated test generation and performance of generated
code. Finally, Selic mentions challenges regarding the integration with legacy
systems, traceability of generated code and the ability to execute models [24].
Nevertheless, we limit the scope of this paper to those aspects relevant for
introducing CI practices in MBD.

In megamodeling, a model is created to describe the relationships between
all concepts in a modeling project [25]. Since part of the work to enable CI
practices is to chart the artefacts in a project and how they are related, a CI
pipeline could be seen as a megamodel. In this paper, we do not further explore
this relation and instead focus on existing modeling tools that are used in current
practice.

6.3 Identifying relevant aspects

In this section, we identify aspects of modeling tools that are relevant for
enabling CI practices in MBD. We first identify core aspects of CI based on our
definition and existing literature. Then, we list particular aspects that realize
these general CI aspects in the MBD domain, based on existing MBD literature.
We submitted the identified aspects for review to two industrial practitioners of
MBD. The resulting aspects are summarized in Table 6.1.

6.3.1 Core CI Aspects

In their literature study, Shahin et al. provide an overview of types of tools
used to form a pipeline for Continuous Deployment (CD) [10]. The categories
are: Version Control System, Code Management and Analysis, Build System,
CI Server, Testing, Configuration and Provisioning, and CD Server. They
note that an implementation of CD does not necessarily include all categories.
Furthermore, the set of CI practices can be considered a part of that CD pipeline,
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where the latter two tool categories (i.e. Configuration and Provisioning and CD
Server) are excluded. Nevertheless, the CD pipeline is a good starting point to
find out relevant features for combining CI and MBD.

We now elaborate on each of the proposed categories and their relevance
for CI practices in MBD. A Version Control System (VCS) is used to manage
different versions of developed artefacts. The artefacts are typically stored in
a shared repository, sometimes allowing developers to copy it and work on
their own instance, or branch. Integration of code is done into this shared
repository. Code management and analysis techniques such as static code (or
model) analysis might be employed to improve the quality of artefacts in a CI
process. They are however themselves not closely related to the three main
activities in the definition of CI: integrating, building and testing. Therefore, we
do not include the Code Management and Analysis category. A build system
typically combines artefacts to create executables. In the case of MBD, this
could mean generating code from models but also keeping the consistency of
several related models. CI servers do not perform builds themselves but rather
execute builds and automated tests in other tools, the results are combined in a
status overview [1]. These automated tests are important to indicate the quality
of integrations. In that way, they contribute to increasing the predictability of
the amount of work left, one of the purposes of CI.

6.3.2 MBD Aspects Related to the Core Continuous Integration CI
Aspects

We differentiate between three types of projects to which CI can be applied. The
first type is traditional software development, no models are used at all. The
second type is very mature MBD, where all code is generated from models and
no manual coding is performed. The third type concerns less mature kinds of
MBD, where code is partially generated and then manually extended to form
a complete application. We consider the latter two types in this paper. The
inclusion of modeling artefacts in the CI process requires that some parts of
integration, testing and building are handled differently. In this section, we
identify the specific aspects of MBD that constitute these differences.
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Integration

We consider the integration of changes to individual artefacts into the repos-
itory and focus on the aspects of model differencing and model merging to
facilitate this integration. Integration is thus considered an activity localized
to the directly changed artefacts. If multiple artefacts need to be changed to
maintain consistency of the models, this is considered as the responsibility of
the developer.

In order to integrate models in a shared repository, there must be a way to
control their different versions. Zhang and Patel [26] refer to CI in MBD as
“Continuous Modeling.” They identify the need to merge frequently, but also
note that merge tooling cannot handle many simultaneous changes. Merging
of models is also identified as an important aspect to the adoption of modeling
tools in general [27, 22]. Alternatively, pessimistic locking is used to avoid
merge conflicts by allowing only one developer at a time to make changes to a
model or part of a model [28].

Building

There is no direct MBD equivalent of a build system for conventional pro-
gramming languages. A build system for models requires more steps than a
build system for code, since code needs first to be generated from the models
and possibly altered or completed by developers. Given the scope of our re-
search, we adapt the previously identified aspect of a build server to include
more model-specific actions. Automated code generation is a central part of
continuous integration in a modeling context [26]. Furthermore, it is argued that
code generators should work incrementally, i.e., that code should be generated
only for parts of the model that have changed [17]. But the key elements of
building in MBD are the ability to generate code and the ability to synchronize
models and code. Therefore, we add only code generation and model discovery
as relevant aspects.

For the different types of CI projects, these aspects can have different
meanings. In projects with complete code generation, this generation is a task
for the build server and is not performed locally by developers. When code is
only partially generated, this can be done both locally and on the build server.
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In case of complete code generation, model discovery is irrelevant, it will never
be done since the code is never manually edited. Conversely, in a partial code
generation scenario, model discovery can be needed both locally and remotely.
In the simplest form, a developer locally makes changes to a piece of generated
code and immediately updates the corresponding model too. In a more complex
scenario, a developer could only change the code, integrate it and expect the
build server to propagate her changes to the model.

Testing

We distinguish three components of testing in MBD: validating the model with
respect to syntax, verifying the model with respect to predefined requirements
and verifying models after integration (integration testing). The aforementioned
continuous modeling practices specify unit and integration testing as important
practices to build confidence in the product [26]. Verification and validation
of models are identified as crucial features of a build server for MBD [18]. In
both cases, “testing” specifically refers to testing the correctness of the created
models, it is assumed that correct models yield correct code and thus correct
applications. We therefore add model validation and verification, as well as
integration testing, as sub-categories of the testing aspect.

Again, some distinctions can be made in testing between the different types
of CI projects. In case of complete code generation, testing the models and the
generated code should yield the same results. In partial code generation projects,
code is the predominantly tested artefact. In both cases, validation of models
with respect to syntax is an implicit part of the code generation process, which
will not yield correct output for invalid models. This validation can also be
a local action, but this is not required for the CI process. It does not prevent
the integration of invalid or incorrect models, analogous to traditional software
development in which e.g. non-compiling or incorrect code is integrated. In
such cases, the builds or tests are expected to fail.

Model-Awareness

In some work about combining CI and MBD, authors have argued the need for
more model-awareness in tasks related to CI. In case of the build tooling, it
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is argued that manual actions that are typically performed in MBD should be
taken into account and that testing should focus on validation and verification of
models [18]. Others argue that the entire pipeline should be model-aware, such
that dependencies between artefacts and between jobs in the pipeline that would
be lost in textual representations can be discovered [20]. García-Díaz et al. also
note lack of model-awareness, particularly in version control systems and code
generation [17]. We do not add an aspect model-awareness to our list but when
discussing the other aspects in modeling tools, we do take into account to what
extent their implementation is model-aware.

The need for model-awareness may also refer to the need to synchronize
several models when one of them is changed. In our case, this model syn-
chronization is limited to the consistency of models and code, and between
several models in a single project. In other cases, the term co-evolution is used
to refer to similar activities that also include the synchronization of models
and metamodels, or the synchronization of models and model transformations.
Since the most used metamodels in the considered tools are UML and SysML,
they and the model-to-text transformations (code generators) are typically not
changed during a project. We therefore refer to this MBD aspect as “model
synchronization.”

Extensive support for activities related to model synchronization, such
as automatically handling inconsistencies, is required in modeling tools [29].
Model synchronization is also related to code generation and model discovery,
i.e., the automatic creation of a model from code. Since the generated code
and models can become inconsistent after changes to either. Modeling tools
can support this synchronization, e.g. by providing automated impact analysis
for changed artefacts, but the process cannot always be automated. Therefore,
manual actions could be required during model synchronization, this step is
unsuitable for inclusion in automated builds. Since we envision a CI pipeline for
models that is automated similarly to that for traditional software development,
we consider model synchronization to be a task performed locally by a developer.
Consequently, the CI server or build server is not concerned with tasks such as
propagating changes to other artefacts. The identified need for support is still
relevant, since the developer should be supported in her local work.
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Automation

Interoperability of a modeling tool with other tools is an important aspect to
consider too [26]. To assess their suitability to cooperate with CI servers, we look
at possibilities to run modeling tools in batch mode or call their functionality
from the command line. If this functionality exists, it can be used to create a
script that automates part of the CI pipeline, including building and testing. Such
automation is of crucial importance to the adoption of CI practices in industry.

Summary

The aspects identified in this section are summarized in Table 6.1. It contains
primary aspects (in bold) and secondary, more specific aspects. In Section 6.4,
we evaluate a set of modeling tools with respect to these primary aspects based
on their support of the secondary aspects. Notably, not all CI aspects are directly
mapped to a single MBD aspect. Rather, the MBD aspects are specific to their
domain and target a more specific functionality than the general CI aspects. In
the table, the citations refer to literature sources used to identify the relevance of
the related aspects.

6.4 Supported aspects

In this section, we introduce the evaluated modeling tools and discuss for each
tool how it implements support for the primary aspects in Table 6.1. We discuss
the tools with respect to their support for the relevant aspects of CI in MBD as
discussed in Section 6.3.

Note that the selection of modeling tool(s) depends on more than just the
ability to use it in a CI process applied to an MBD project. Conversely, a CI
process in MBD depends on more than just the used modeling tool(s), such as
the maturity level of the modeling practices. The goal of our work is not to
identify the best modeling tool for CI, but rather to investigate what impediments
in applying CI to MBD projects exist.
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Table 6.1. Identified relevant aspects of CI in MBD.

CI MBD

Integration [10] [26, 27, 22]
Model Differencing
Model Merging

Building [10]
Code Generation [26, 17]
Model Discovery [29]
Model Synchronization [29, 19]

Testing [10]

A
sp

ec
ts

Model V&V [18]
Integration Testing [26]

Automation [10] [19]
Building
Testing

6.4.1 Modeling Tools

The selection of modeling tools was based on their use in industry and on inputs
from our industrial partners. We included the four most-used1 tools in industry
as reported by practitioners [23]: MATLAB SIMULINK, SPARX SYSTEMS

ENTERPRISE ARCHITECT, IBM RATIONAL RHAPSODY2, and NATIONAL

INSTRUMENTS LABVIEW. After discussions with our industrial partners, this
list was supplemented with four additional tools that are most relevant to their
daily work: NOMAGIC MAGIC DRAW, PTC INTEGRITY MODELER, ONEFACT

BRIDGEPOINT, and ECLIPSE PAPYRUS. Most of these tools support UML and
SysML, among the most used modeling languages in industry [23]. Exceptions
to this are BRIDGEPOINT, which supports xtUML (an executable dialect of
UML), LABVIEW, which supports their “G” graphical modeling language, and

1Excluding Eclipse-based tools and in-house tools, since they cannot be specified to a particular
tool. They are reported as second and fourth most used respectively [23].

2In [23] the reported tool is Rational Modeler, but we include Rational Rhapsody, which can
be seen as its successor.
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Table 6.2. Evaluated tools in this review.

Tool Vendor

Supported
Modeling
Languages

BridgePoint OneFact xtUML
Enterprise Architect Sparx Systems UML + SysML
Integrity Modeler PTC UML + SysML
LabVIEW National Instruments G
Magic Draw No Magic UML + SysML
Papyrus Eclipse UML + SysML
Rhapsody IBM UML + SysML
Simulink MathWorks Simulink

SIMULINK, which supports modeling in the Simulink language. Most of the
tools thus support general purpose modeling languages. The most advanced
modeling practice includes the creation of custom Domain-Specific Languages
(DSLs). Tools used for that purpose are further away from the state of practice at
our industrial partners and therefore not included in this evaluation. An overview
of the considered tools is shown in Table 6.2.

6.4.2 Other Tools

In addition to the modeling tools, a CI pipeline typically also involves Version
Control Systems (VCSs) and CI servers. There exist numerous open-source
and commercial CI servers, such as JENKINS, TRAVIS, and TEAMCITY. Some
of these allow for a completely custom defined pipeline whereas other tools
provide users with a choice between predefined pipelines for some program-
ming languages. Since we aim at using these tools in MBD processes, we are
particularly interested in those CI servers that allow the definition of a custom
pipeline. Therefore, we will mainly refer to JENKINS in the remainder of this
section.
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6.4.3 Tool Evaluations

We evaluated how the selected tools support the primary aspects depicted in
Table 6.1. The evaluations are based on publicly available documentation and
research papers about the tools. The results of the evaluation are summarized at
the end of this section in Table 6.3.

Integration

In BRIDGEPOINT, version control is difficult to achieve [30]. Automated
merging is not supported but the tool does show a visual difference between two
versions of a model. This is not necessarily an impediment to introducing CI
practices, but in practice it may discourage developers to integrate frequently if
every integration potentially requires a large manual effort.

ENTERPRISE ARCHITECT (EA) has no integrated support for model ver-
sioning but relies on pessimistic locking of packages (parts of models). This
system grants user exclusive editing rights on a package, thus preventing con-
flicts due to simultaneous changes. The tool does support the integration of
several third-party version control systems, which can be used to store and
manage the history of EA models. Additionally, LEMONTREE is a third-party
project that supports optimistic locking, three-way merging and branching for
EA models.

INTEGRITY MODELER contains a built-in service for configuration man-
agement. It includes a weak optimistic locking mechanism allowing multiple
developers to collaborate on the same artefacts simultaneously. When multiple
users are editing the same artefact, the changes of one of them are visible to
each of the others in real-time. Alternatively, there is an optimistic locking
mechanism available, where these changes are not visible. Then, merges can
be performed automatically and their results manually edited to resolve merge
conflicts.

LABVIEW includes a tool showing graphical differences between model
versions. VCSs, such as GIT and SVN, can be used to keep track of different
model versions. The differencing functionality of those tools can then be redi-
rected to use the graphical difference available in LABVIEW. Merges can be
performed automatically and merge conflicts can be resolved manually.
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MAGIC DRAW contains a built-in server for version control, it provides a
model repository and supports collaboration through branching and merging.
Branching allows multiple developers to work in parallel on the same project. A
plug-in is available to support merging at model level. In case branching is not
used, concurrent changes directly on the mainline are prevented by means of
pessimistic locking. The locks can be acquired at sub-model level, i.e., parts of
a model can be locked for editing. The locks can then be released or maintained
on commit.

PAPYRUS can be extended using plug-ins that are part of the Eclipse Mod-
eling Framework (EMF). The Collaborative Modeling initiative provides such
plug-ins, in terms of collaboration support for modeling in ECLIPSE, by using
EMFCOMPARE for the detection and merging of changes, EGIT for distributed
version control and GERRIT for reviews of models. This allows developers to
create a branch for a project, make changes and merge them into the mainline
while staying on the model level. The included version control system EGIT is
an implementation of GIT, incorporated in ECLIPSE. EMFCOMPARE shows
differences of changes between model versions from several views (graphical,
textual, tabular). It can automatically merge changes, or in case of conflicts in
three-way merges, allows the developer to choose the version to be integrated.

RHAPSODY includes the tool DIFFMERGE, which can show graphical differ-
ences and automatically merge models or projects containing models. In case of
any merge conflicts, the developer is shown a graphical difference between the
versions and can resolve the conflict by choosing one of the versions. The tool
also supports integration of version control systems CLEARCASE and SVN.

SIMULINK provides version control support through an integrated SVN
instance but can also be used together with GIT. This allows a project to be
branched and thus models to be edited in parallel. SIMULINK contains an
integrated tool for three-way model merging. The tool automatically merges
models and on conflict offers a choice between the remote, base and local
change.

Summary There are three main approaches for model versioning in the eval-
uated tools. The first, locking, does not scale to large collaborative projects.
The second, leaving versioning completely to a VCS, is not feasible because
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the VCS is typically not model-aware, which is required for merging at model
level. Furthermore, line based differencing of the XML representations is not
appropriate for models [28]. The third and most feasible versioning approach
when introducing CI practices is to enable the integration of a version control
tool in the modeling tool, but circumscribing model differencing and merging to
the modeling tool itself. Indeed, this level of support is provided by multiple
tools: SIMULINK, RHAPSODY, MAGIC DRAW, and PAPYRUS.

Building

BRIDGEPOINT provides integrated support for code generation. This functional-
ity forms the “Translatable” part in “eXecutable Translatable UML” (xtUML).
Models in xtUML can be transformed to C, SystemC or C++ using included
model compilers. These compilers are open source and can be customized.
It is also possible to create new compilers to translate models into different
programming languages. Changes to generated code are not propagated back
to models. So, there is only support for one-way development and not for the
round-trip from models to code and back. When the generated code is a com-
plete application rather than a skeleton or a detached, individual subsystem, this
is not necessarily an impediment to introducing CI practices.

In ENTERPRISE ARCHITECT, skeleton code can be generated from both
Class diagrams and Interface models. More detailed code can be generated
from sequence-, activity-, and state machine diagrams. Several languages
are supported, including C, C++, C#, and Java. Reverse engineering is also
(partially) supported since some UML diagrams can be generated from code.
ENTERPRISE ARCHITECT includes a development environment where generated
code can be edited. This environment also supports typical functionalities of
a code editor such as debugging and profiling. Code generation and reverse
engineering can be combined and an option exists to keep models and code
synchronized. When generated code is updated due to a change in the model,
the body of methods is untouched, only their headers are changed such that
previous work is not undone. Although ENTERPRISE ARCHITECT provides
traceability matrices from requirements to models for requirements engineering,
impact analysis for changes in models is not supported. Some work has been
done on creating impact analysis techniques for any ENTERPRISE ARCHITECT
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model, showing the potential of third party solutions to solve this problem [31].
INTEGRITY MODELER supports code generation from class and state-

machine diagrams in several programming languages, including Ada, C++,
and Java. The generated code might be complete but usually manual editing is
required [32]. The tool includes functionality to keep models and code synchro-
nized in real-time when manually altering the code. Furthermore, it supports
impact analysis by letting the user define relationships between different mod-
eling artefacts. These relationships can then be visualized to identify potential
model elements that need to be synchronized.

Using additional code generators, C and Ada code can be generated from
LABVIEW models. Templates on which the generations are based can be cus-
tomized. Alternatively, the generated code can be customized after generation.
Code generation is a one-way process, where the generated code is expected to
be complete with no manual editing required. The generators are designed to
produce code that can be integrated in a larger project.

MAGIC DRAW can generate code in several languages (Java, C++, C#). In
most cases, code generated from models will be skeletons and thus will be edited
by developers to implement complete functionalities. There is also support for
reverse engineering; models can be derived from code. Forward and reverse code
engineering is managed using Code engineering sets. These sets contain model
elements for which code is generated and conversely files from which code is
reversed to models. In addition, relationships between model components can
be defined. These can be visualized in different ways to show the impact of
changes on the remaining model artefacts in the project.

PAPYRUS supports code generation from UML models through plug-ins.
There are plug-ins available for the generation of C++ and Java code from UML
models, but it is also possible to create custom code generators for other lan-
guages. Reverse engineering is supported as part of the PAPYRUS SOFTWARE

DESIGNER tooling, using it, class diagrams can be generated from Java classes
and packages. Using the Papyrus Software Designer plug-in, models and gener-
ated code can be synchronized. Changes to the code are then propagated back
to the model and changes in the model are incrementally applied to the code.

RHAPSODY can generate code in C, C++, Java and, using a specific RHAP-
SODY DEVELOPER version, also for Ada. This is done incrementally, i.e., only
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new code is generated for modified model elements. The generated code can
be modified and changes are propagated back to the model. It is also possible
to specify code that should not be included in this round-trip, which could be
useful for implementation-specific code that is not to be reused in other ver-
sions of a product. To see the impact of a change on the other artefacts in the
models, RHAPSODY supports automated impact analysis. The user configures
the analysis by defining, among other things, the types of links to follow and
their depth. Given the result of an impact analysis, it is up to the developer to
manually co-evolve the impacted artefacts.

The generation of C and C++ code from SIMULINK models is supported
by additional tools that can be integrated in SIMULINK, such as EMBEDDED

CODER and SIMULINK CODER. Generated code is a complete program, not
just skeleton code. Modifying the generated code can be done at the level of the
code generators, which can be configured to replace code by custom snippets.
This also means that the process of code generation is one-way; there is no
support for propagating manual changes in the generated code back to the model.
SIMULINK also contains a facility for automated impact analysis that can predict
impacted elements in anticipation of a particular change.

Summary The basic functionality of generating skeleton code from models
is present in each of the considered tools. The detail of the created models
dictates whether the entire application or only skeleton code can be generated.
This distinction usually influences the functionality regarding synchronization
of models and code too. This aspect is usually better supported in tools that
just produce skeleton code than in tools that produce complete code and where
thus the generated code does not require manual editing. We have seen that
some tools contain functionality to assess the impact of changes at model level,
but that the implementations still rely mostly on manual actions, which is not
ideal in an automated build scenario. We note that this type of synchronization
functionality focuses on models and code created in a single modeling tool. In
projects where multiple modeling tools are used, more challenges related to the
synchronization of the different models can be expected. This is mainly due to
the limitation of impact analysis to assess only the impact of changes in models
to models created in the same tool.
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Testing

To test models, BRIDGEPOINT provides a verifier. This functionality forms the
“eXecutable” part of xtUML. The verifier can be used to test models without
the need to regenerate source code. It executes the model itself and supports
placement of breakpoints and inspection of variable values during the simula-
tions. This can be useful for manual testing, but less so in CI settings, where
automated testing is preferred.

In ENTERPRISE ARCHITECT, models can be simulated and test scripts can
be defined to automatically test model elements. In these scripts, unit tests for
Java (JUnit) or .NET (NUnit) can be called. A skeleton for these unit tests can
automatically be generated from class diagrams. By default, the tool supports
the validation of models with respect to the UML syntax, but custom rules can be
added. Furthermore, validation and test scripts can be used to automate testing
of models, whereas the simulation functionality is mostly meant for debugging.

LABVIEW includes a framework for unit testing. Test cases can be defined
in the tool itself by defining input values and expected output values for a
specific unit under test. The tests can be executed in isolation or in a test
suite. The tool includes a functionality to track tests and the code it covers,
automatically providing the developer with code coverage information. In
addition to this, models can be validated using static code analysis rules, which
can be customized for particular purposes.

INTEGRITY MODELER contains a framework for automated testing. In it,
test cases can be defined, triggered and their results viewed. The test cases can
also be grouped in sessions, allowing their execution to be automated.

In MAGIC DRAW, models can be validated with respect to predefined con-
straints or custom created constraints expressed in the Object Constraint Lan-
guage (OCL). If the validation logic cannot be expressed in OCL, boolean
constraints can be defined in Java. Additionally, unit tests can be defined to ver-
ify models or integrations. JUnit is used to express test cases that can be executed
using the build-in test framework. The framework also provides functionality
for checking the created program for memory leaks.

PAPYRUS models can be validated with respect to predefined soundness
constraints. Custom constraints can be defined in OCL. Validations can be
performed on an entire model as well as on parts of a model. Warnings or errors
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are shown in the models themselves after a validation. This validation is a static
check, but UML models can also be executed, using the execution engine of
the Moka module. This can be used to manually test models, but there is also
support for automatic testing. The PAPYRUS TESTING FRAMEWORK supports
the automatic generation of unit tests from UML diagrams. The unit tests can
be automatically tested using the JUnit framework.

Before code is generated in RHAPSODY, a model-checker can be run to
validate the model with respect to predefined and custom defined rules. Such
custom rules have to be written in Java and can be used to check both the
structural and the behavioral aspects of the model. Included in the tool is also a
functionality to simulate models (or animate as is the used terminology for this
tool). In addition, the tool can be integrated with other IBM RATIONAL tools
for testing (TEST REALTIME) and quality assessment (QUALITY MANAGER).
Furthermore, the tool includes a framework for the automatic generation of test
cases.

Similar to code generation, there exist additional tools for the validation and
testing of SIMULINK models. SIMULINK TEST is a tool that supports creation
and execution of test cases for models. Test cases can be defined to verify the
models with respect to functional constraints. It also provides an overview of
failed and succeeded test cases, similar to the dashboard of CI tools.

Summary Most tools contain a unit testing mechanism. Some implement
their own and some use existing frameworks such as JUnit. Most tools also
include model validation functionality, a check of the well-formedness of the
models with respect to the metamodel. Additionally, some tools are capable of
simulating models, which is primarily useful for manual debugging. Next, we
look at ways to automate builds and tests in the considered tools.

Automation

The BRIDGEPOINT editor is based on ECLIPSE and its model compilers are
implemented as ECLIPSE plug-ins. It is possible to run these from the command
line and thus incorporate them as a build step in a CI pipeline. Similarly, the
testing functionality incorporated in the verifier can be included in an automated
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process.
ENTERPRISE ARCHITECT offers the possibility to create analyzer scripts,

these can be used to automate builds, tests, and other functionalities. The scripts
can be created in the tool itself and allow for execution of the builds and tests
from the command line. The scripts can also be used to specify an output file
to contain a generated report on the test results. Furthermore, they can be used
to execute the models and deploy the project, but that is out of the scope of our
definition of CI.

Automation for CI can easily be achieved in INTEGRITY MODELER using a
Jenkins plug-in.3 The plug-in can detect changes in the built-in repository and
can be configured to execute builds after such a detection. Furthermore, it can
retrieve the results of automated tests, executed after the build. The availability
of the Jenkins plug-in signals a higher level of maturity with respect to CI
processes than seen in other tools.

For LABVIEW, command line interfaces are available as open-source.4

These allow the builds and tests to be executed by a CI server, e.g. Jenkins.
The test reports created by the tool can be stored as HTML files and as such be
shown in Jenkins [33].

MAGIC DRAW supports extensibility by custom add-ins through its Open
API. This API also allows the tool to be run in batch mode. This allows command
line access to code generation and unit test execution, which makes it suitable to
be used in a CI pipeline. Alternatively, MAGIC DRAW can also be integrated in
other applications using its OSGi interfaces. Since this construct is Java-based, it
is applicable in fewer cases than the generally applicable batch mode construct.

For PAPYRUS, code generation and model testing functionalities are pack-
aged in ECLIPSE plug-ins. These are executable from the command line, which
can be leveraged to include PAPYRUS in a CI pipeline, for example by calling
these plug-ins from scripts managed by a CI server such as Jenkins. Creating a
CI pipeline for conventional Eclipse projects is a common practice, so it is not
expected that these particular tools would yield new problems.

RHAPSODY offers command line interfaces for code generation and the
DIFFMERGE tool. Using these commands, code can be generated for specific

3https://wiki.jenkins.io/display/JENKINS/PTC+Integrity+Plugin Last access: June 4, 2018
4https://github.com/JamesMc86/LabVIEW-CLI, retrieved: June 1, 2018
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components or for a project containing a number of components. This allows
for these tasks to be integrated in a CI pipeline where only models are checked
in to the version control system and the application is generated.

It is possible to create a CI pipeline using JENKINS to automatically execute
builds and tests in SIMULINK. Furthermore, the CI tool can be configured to
report on the success or failure of the automated tests. Such a process can be
created using MATLAB, GIT and JENKINS [34].

Summary With some effort, each modeling tool can be included in a CI
pipeline. We have seen some examples of ready-made pipelines including some
of the discussed tools. As long as the different approaches to automation can
still be executed from a pipeline, there should be no impediments regarding
combining automation for multiple modeling tools in one pipeline.

Evaluation Summary

Table 6.3 summarizes the evaluations by scoring the different aspects in each
tool as mature, standard, or immature. We define the thresholds for these scores,
based on the identified aspects in Section 6.3, as follows. For integration, an
immature level of support is considered an approach that does not allow version-
ing of models, but e.g. utilizes pessimistic locking. A standard support would
be one where models can be merged. A mature level of support is considered
when the tool also supports the visualization and resolution of conflicts. For
building, an immature level of support would be one where no code generation is
possible. Code generation is considered standard support, while mature support
includes back-propagation of code changes to models. For testing, immature
level of support only includes syntactical validation of models. Standard support
involves also verification of models using model testing. Support for testing is
considered mature when it includes unit tests for code and models. For automa-
tion, tools are considered to provide immature support if they do not feature
explicit hooks to incorporate them in a CI pipeline. A standard level of support
includes the possibility to run the tool in batch mode and perform some actions.
We require the presence of a command-line API to grant mature level of support
for automation.
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Table 6.3. Aspects as supported by tools, scored by -, ◦, or +, depicting immature,
standard, or mature support respectively.
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Automation - ◦ + + ◦ ◦ + +

6.5 Discussion

We have summarized the answers to our research questions by listing relevant
features for a modeling tool to be able to support CI practices in Table 6.1
and by summarizing the extent to which these features are present in current
modeling tools in Table 6.3. Regarding integration, most of the considered tools
provide support for differencing and merging at model level. They provide
representations in various formats of model differences and allow developers to
resolve merge conflicts at model level. The storage of models and change history
is usually managed by a VCS such as SVN or GIT. For building, all tools
provide some form of code generation. Nonetheless, there is a great variability
in the maturity of what the environments can do after the code is generated.
Some tools automatically keep code and models synchronized whereas in others
code generation is a one-way operation. The most challenging aspect seems
to be the synchronization of different models, for which most of the tools
include some level of change impact analysis support. Another challenge is
the synchronization of models when multiple modeling tools are used in the
same software project and combined in the same pipeline. Testing is supported
by each of the tools, but with different maturity levels. Finally, it is possible
to automate at least parts of the build and testing processes for each of the
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tools. For some of the modeling tools such automated approaches are available,
whereas for others it would require custom configuration.

From the evaluations of the modeling tools, we did not find any theoretical
obstacle in introducing CI practices in MBD. Some tools already have fairly
good support for CI, and by cherry picking features from other tools, they
could be even more suitable for CI practices. In fact, in Section 6.4.3 we have
mentioned some applications of CI in each of the tools INTEGRITY MODELER,
LABVIEW, and SIMULINK. On the other hand, we foresee challenges in model
synchronization and automation in projects involving multiple modeling tools.

6.6 Threats to validity

In drafting both the list of relevant aspects and the list of considered tools there
is an amount of subjectivity and possible bias. Tools and aspects may be omitted
or be listed but less relevant. Incompleteness of the list of aspects was a threat
to the validity of this work, since we aim to find impeding aspects. If crucial
aspects were not included, we could not find the corresponding problems in
the evaluated tools. To limit this risk, we gathered core relevant aspects by
investigating existing literature on the topics of CI and MBD; furthermore,
the lists were informally validated by two practitioners from industry with
experience in MBD and CI. Similarly, the selection of the tools contains a bias
towards UML and SysML. Other languages or modeling paradigms may yield
different impediments.

Other threats are related to our chosen research methodology. The evalua-
tions are based on publicly available documentation and research papers. This
means that we did not experiment with the tools themselves to assess the aspects.
The advantage of this approach is that we avoid defining a scenario to evaluate
the tools, which may not fit all tools or may accidentally favor some of them. On
the other hand, the inherent threat of this approach is that it does not highlight
possible issues only visible when using the evaluated tools in practice.
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6.7 Conclusions and future work

In this paper, we identified relevant aspects of modeling tools to support CI
practices. We then evaluated eight modeling tools and assessed their levels of
support for each of the aspects. In the evaluated tools, we have seen different
maturity levels of support for the considered aspects. Overall, we found some
challenges, but no insurmountable impediments to introducing CI practices in
MBD.

The next step of our research consists in a set of interviews with MBD prac-
titioners working at different MBD maturity levels and in different companies.
Practitioners will be asked to share their views on introducing CI practices in
MBD and their views on the impediments in their context. These interviews may
uncover hidden technical aspects that did not arise in this work, or bring up other,
non-technical impediments, such as those briefly mentioned in Section 6.5.
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Abstract

Model-based development and continuous integration each separately are meth-
ods to improve the productivity of development of complex modern software
systems. We investigate industrial adoption of these two phenomena in combina-
tion, i.e., applying continuous integration practices in model-based development
projects. Through semi-structured interviews, eleven engineers at three com-
panies with different modelling practices share their views on perceived and
experienced impediments to this adoption. We find some cases in which this
introduction is undesired and expected to not be beneficial. For other cases, we
find and categorize several impediments and discuss how they are dealt with in
industrial practice. Model synchronization and tool interoperability are found
the most challenging to overcome and the ways in which they are circumvented
in practice are detrimental for introducing continuous integration.
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7.1 Introduction

For the design of complex modern software systems, model-based development
(MBD) is often leveraged, i.e., models are used as core artifacts for activities like
system design, simulation, and code generation [1]. The models are core artifacts
in the sense that the eventual code and application match them and the models
are not used, for example, just for informal communication. Industrial practice
implies collaboration on these models by multiple engineers, possibly from
multiple domains. Empirical results show improved productivity of development
in industrial settings when that includes using models in this way [2, 3, 4, 5].

In parallel, Continuous Integration (CI) has also been evaluated in industrial
settings and shows an improvement in the productivity of software develop-
ment [6, 7]. CI proposes a collaboration in which developers frequently (at least
daily) integrate their work into a shared repository [8]. Notably, CI does not
entail continuously making a release available (as in continuous delivery) or
continuously deploying the software on user machines (as in continuous deploy-
ment). The respective scopes of these practices are illustrated in Figure 7.1.

Build  Test   Release   Deploy  Develop

Continuous 
 Integration

Continuous 
Delivery 

Continuous 
Deployment 

Figure 7.1. Steps included in continuous integration, continuous delivery, and
continuous deployment.

To optimally make use of their individual benefits, we consider the com-
bination of CI and MBD. This entails multiple developers using models as
core artifacts for development and frequently integrating new versions of these
models into a shared repository. In our experience, industrial adoption of this
combination of practices is low, despite several evaluations showing its potential
benefits [9, 10]. More specifically than agile, combining CI and MBD is also
identified as a promising practice towards increased development productiv-
ity [11, 12]. Understandably, introducing these development methods in industry
is not an overnight process and many obstacles are encountered. To identify the
most important of these impediments, we have interviewed industry practition-
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ers who share their experience and expectations for the future from different
perspectives.

The remainder of this paper is organized as follows. In Section 7.2, we
describe the design of the interview study, the findings from which are then
presented in Section 7.3 and further discussed in Section 7.4. Relevant related
work is considered in Section 7.5 and the paper is concluded in Section 7.6.

7.2 Research approach

7.2.1 Context

We consider the combination of CI and MBD to entail a practice in which models
are developed in rapid iterations and developers integrate their work frequently
into a shared repository. When models at different levels of abstraction are
created, for example for system design and software implementation, they
should be synchronized. Changes to any model could incur a build and test run,
as part of the CI pipeline. A common current industrial practice is development
using the “V-model” [13], so initially this CI can be seen as an enhancement of
some steps in that process, as illustrated in Figure 7.2.

Concept of
Operations

Requirements 

Detailed Design 

Implementation 

Integration, Test,
Verification 

System Verification,
Validation 

Operation,
Maintenance 

Test,
Integration 

Project
Definition 

Verification,
Validation

Architecture 

Figure 7.2. Continuous Integration concerns the steps in the bottom of the V-model [13].
Modelling artifacts belonging to these blocks may be subject to rapid iterations that
may impact modelling artifacts in the other blocks, as indicated by the dashed arrow.
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By means of interviews with industry practitioners of MBD, and to some
extent also CI, we reflect on the difficulties of adopting this combination of CI
and MBD in practice. Specifically, we aim to answer the following research
question:
What are the experienced and perceived impediments to introducing continuous
integration in model-based development projects?

7.2.2 Interview Design

In this work, we consider the perspective of three large companies, referred
to as company 1, company 2, and company 3. Two of the companies are
based in Sweden and one is based in the Netherlands. The companies develop
software for embedded systems in the varied domains of avionics, electronics,
and vehicular embedded systems.

We have interviewed eleven engineers, five at company 1, two at company
2, and four at company 3. The interviewees have various roles in the compa-
nies, such as system architect, system designer, software engineer, or software
integrator and have varied levels of experience, from an interviewee being in-
volved in modelling only since its company introduction in the last 2 years to an
interviewee who has been involved with modelling for more than 25 years.

At two companies, the interviews were conducted by two interviewers, at the
other company the interviews were conducted one-on-one. The interviews at one
of the companies were in person, the others remote, through Skype and by phone.
Audio of eight interviews and detailed notes of all interviews were recorded.
The notes were summarized and sent to the interviewees for confirmation and
discussed extensively between the interviewers.

In the design of the interviews, we have included some measures to alleviate
threats to external, construct, and internal validity as well as threats to their
reliability, using the categorization of these threats by Runeson and Höst [14].

7.2.3 Threats to validity

A threat to the external validity of this work is unjustly drawing generalizing
conclusions based on a too narrow sample. We alleviate this threat by including
companies who implement MBD to different degrees and thus have the required
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different perspectives. Albeit a small sample size, we synthesize our results such
that they are nevertheless relevant for companies that have adopted agile and
MBD to similar degrees as the interviewed companies.

To alleviate threats to construct validity, in particular the threat of the in-
terviewers and the interviewees having a different idea in mind when talking
about agile MBD, we presented our views on these concepts before starting
each interview. In this brief introduction we presented definitions of MBD and
CI, as well as what we mean by their combination, similar to the introduction
of this paper. Furthermore, during each interview, the interviewers have taken
detailed notes that were, as mentioned, summarized and sent for review to the
interviewees, such that they could confirm that we reflected their statements
correctly or to allow them to correct misunderstandings.

The internal validity of our study can be impacted by interviewers not
having a complete picture of the context in which the interviewee is working.
Consequently, the interviewers could unjustly attribute certain impediments
to certain practices. To alleviate this threat, we started the interviews with
questions to determine the current state of practice at the companies and used this
information after the interviews to discuss the results between the interviewers
to understand from what viewpoint the different comments originate.

Towards the reliability of any interview study, there is a trade-off between a
strict set of completely reproducible closed questions and an open conversation
highly influenced by the personal input of the interviewers. We have balanced
these interests by creating semi-structured interviews following the pyramid
model [14]. Early questions are closed and specifically related to the current state
of practice at companies and the professional background of the interviewees. In
later stages of the interview, the questions are open and only the themes decided
beforehand. During that stage, we ask the interviewees to identify impediments
to combining CI and MBD, which allowed us to then talk more in-depth about
these identified impediments by asking follow-up questions to explore them
further.
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Figure 7.3. Relative positioning of involved companies based on their adoption of agile
and MBD practices.

7.3 Findings

In this section, we present the results from the semi-structured interviews. First,
we briefly describe the current state of practice at the industrial partners. Then,
we categorize perceived and experienced impediments as identified by intervie-
wees.

7.3.1 State of practice

All three companies are, to different extents, model-based development practi-
tioners and also have adopted agile development practices to different extents.
Figure 7.3 sketches the relative positions of these companies on both spectra,
where the horizontal axis denotes adoption of models in development and the
vertical axis denotes adopting agile practices with respect to the development of
those models.

Company 1 utilizes models to create system designs at a high abstraction
level. At this level, the design is mostly concerned with subdividing the system
into clusters of software components and specifying their interfaces. After
this stage, the models are handed over to software teams, who implement the
designed components in code. There are some agile processes in place in the
software development part, but not involving the development of the system
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models. Iterations of the models are spread out over a long time and are usually
made far in advance of the software development, making system models and
the software implementation quite decoupled. Changes to the system design are
communicated by system designers to software engineering teams after each
new iteration by means of a manual handover, in which the teams agree on the
changes and their implications.

Company 2 works in a similar way; a system design is created using models
at a high level of abstraction, which are not directly linked to the software
implementation. Additionally, a portion of the software is implemented in
models from which code is generated. CI is used in the development of these
software models, it is done in rapid iterations and they are integrated very
frequently, up to multiple times per day.

Company 3 has a continuous integration pipeline in place for software
models, all code is generated from them. For the design of the system, models
are used in a less formal way, embedded in documents and only meant for
communication of the design ideas. Since they are used in this way, the models
do not necessarily strictly conform to their language syntax and no explicit links
exist between these design models and the software models.

It should be noted that we considered only companies who already employ
models for the development of their software systems. So, we are investigating
only how to adopt CI once modelling is to some degree in place, rather than
considering also the symmetrical case, where CI is in place but models are not
used at all. Given the known challenges in adopting modelling, it is more in line
with industrial practice to consider the introduction of CI in MBD, rather than
supposing that modelling is introduced in an already agile, but code-centered
software development process.

7.3.2 Conservative views

Early on in our research, we encountered MBD setups in which there is no
need nor desire for more rapid development iterations, contradicting our initial
assumptions by saying for example that there is no need for CI and that the
current practices are good enough. An example of such a case involves a clear
distinction between the design and implementation phases. In the design phase,
system models are used to describe the system at a high level of abstraction. In
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the implementation phase, models or code are used to design the software, but
there are no formal or automated links between the system models and the imple-
mentation models or code. Therefore, in both of these cases, the synchronization
between design and implementation is done manually, either by communication
between system design teams and implementation teams, or by having the same
engineers work on both parts. Rapid iterations are then undesirable because they
would only increase the communication overhead between teams, or impractical,
when both phases are performed by the same engineers but the implementation
phase starting after the design phase is completed.

To better align our questions with these practices, we have first asked in-
terviewees about their views on potential benefits to introducing more models
in the software development, we then asked them to think about impediments
they see towards that goal. Having established first the introduction of models
throughout development, we moved on to questions regarding the benefits of
applying CI in modelling contexts and perceived impediments towards doing so.
The questions thus follow the expected adoption process of agile modelling, i.e.,
first introducing MBD, then going more agile. This order of the questions was
chosen to separate concerns interviewees might have regarding the introduction
of modelling from the impediments they encountered or expect to encounter
when introducing CI.

Using more models in development can refer to extending modelling practice
from system design to software models. Alternatively, it can refer to using
models more formally in all development stages, rather than for example only
for communication of system design concepts. The opinions are divided on the
formality required in the created models, where more strictness is seen as a must
for introducing more automation, but on the other hand, some engineers would
like to have more freedom in a modelling tool, for example by writing free text
in models, to enable easier communication of design ideas.

When code is written manually, interviewees view the potential productivity
gains of introducing CI in MBD as minimal. But at the same time, modelling
for code generation encounters some apprehensive views. Firstly, enabling code
generation requires modelling to a low level of abstraction, which is a big step
when the current practice includes only modelling on system level. This causes
some reserved reactions from engineers stating that modelling is more difficult
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than coding for certain concepts, such as parallelism: “Things are sometimes
very difficult to describe in models, perhaps software on a higher control level
can be described, but parallel processes and what is described in VHDL on our
FPGAs, . . . , complete parallelism is impossible to describe, at least in SysML.
All those continuous flows, I don’t know how to describe those.” Similarly, some
doubts are shed to the applicability of modelling in their domain, or for their
specific products: “code generation is good if you want to make very simple
things.” These types of comments illustrate some of the conservative viewpoints
in industry, but more experienced modellers have expressed their wonder at the
resources spent on writing code while it could be generated from models: “I
don’t see why we have to write code anymore.”

More rapid iterations in the system design might also not be considered
relevant because the design is often made far in advance of the software im-
plementation and is not so flexible but only updated for very relevant changes.
Another viewpoint is that it would hinder the freedom of developers, as said by
one interviewee about introducing more formal modelling at system design level
(instead of using models only for communication): “I think in some situations
this might help a little, but mostly it would be experienced as a limitation if those
high-level diagrams have to be correct.”

CI for models at the implementation level is in place in two of the companies
in this study, although those models are not explicitly linked to the system
design models. It is noteworthy that both companies use, for this stage, a single
modelling tool, simplifying the implementation of a CI process. More rapid
iterations involving both the system design and the software implementation
are not considered useful due to the previously mentioned factors. The system
design is typically to a large extent completed before the implementation starts
and is often created for the purpose of communication, so the models are not a
precise description of the design. Furthermore, as discussed before, the process
of synchronizing between the phases often involves communication between
people, which scales badly to faster iterations. Rather, a more explicit coupling
between the models at the different abstraction levels is desired, such that
the impact of changes in the design are clearer to the system designers and
the required changes in the implementation are easier communicated to the
implementation teams. As reflected by the following statement about more rapid
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iterations between models on all levels, “If the models would be more connected,
then that would work much better”.

7.3.3 Impediments

The conservative views of some interviewees were not shared by all interviewees
in companies 1 and 2. Some engineers did see benefits in moving towards CI
even with current modelling practices. “Yes obviously, we would like to have
that, because it’s working quite well in the software area, but it’s hard to get to
a point where it is convenient, especially in the modelling world.” In general,
the benefits of a short turnaround loop between software and system design are
appreciated, but thinking about doing CI in MBD may be a bridge too far. Many
other problems need to be solved before getting to a stage where these practices
are useful enough to be increasing productivity. It seems that the views of the
engineers with conservative views to introducing CI in MBD are influenced by
the impediments they foresee towards its implementation.

We have collected impediments from different perspectives, by asking engi-
neers in companies 1 and 2 what they perceive as impediments now, and expect
as impediments in the future, towards implementing CI in MBD. Engineers in
company 3 were asked to reflect on their implementation of CI and the biggest
obstacles encountered, as well as looking ahead to expected impediments when
further streamlining their existing development processes. We categorized the
obtained impediments as those having causes based on the desired functionality
of the combination of CI and MBD, causes related to non-functional elements,
such as the development process, human causes and business causes. A sum-
mary of those findings is provided in Table 7.1. We now elaborate each category
and each identified impediment.

Functional

A CI practice in which models at multiple levels of abstraction are included
requires a tight coupling between all models, such that automatic builds and tests
can provide insight into the state of the integration. Since models describing
the system at different levels of abstraction and from different disciplines are
typically expressed in different languages and created in different tools, this
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Table 7.1. Summary of identified impediments to introducing CI in MBD in this paper,
in different categories of causes.

Functional Lack of tool interoperability
Lack of synchronization between models
Requires model validation
Lack of model merge support
Lack of configuration management

Non-functional Too long time needed for builds and tests
Lack of impact analysis
Tooling frustrations

Human Lack of modelling expertise
Lack of willingness to model
Difference in modelling styles

Business Difficult to enthuse management and colleagues
Lack of time/knowledge to set up tool-chain
Domain-induced complications

requires multiple tools that work well together. While engineers endorse this
need: “An integration would be good to have, between different tools, different
categories of system designs”, in practice, getting tools to cooperate is very
challenging. “I don’t really believe strongly in having several tools if they are
not really tightly integrated, but then it’s the same tool.” As another interviewee
stated, on the impediments to more frequent integrations of models on all levels:

“one reason is the different tool vendors, which are not integrated.” Companies
have dealt with these tool interoperability challenges mostly by avoiding it.
The models from which code is generated are all created in the same tool.
Other models, for example system models, are created in different tools, but
are connected to each other only informally, so there are no automatic checks
between them or formal definitions evaluated to check that these models express
the same design.

Indeed, this lack of tool interoperability consequently contributes to develop-
ment in which the synchronization between models is a manual task, increasing
overhead and decreasing the ability of continuously integrating new model



7.3 Findings 85

changes. As discussed earlier, a more explicit coupling of these models is
desired. As one interviewee underscored with the following statement about
system and software models: “We have a need to integrate it really.” Or, par-
ticularly about generation of code and the creation of a feedback loop between
models at different levels: “It would be good to have a nice turnaround from de-
sign to code and from code to design. I think we will always need the possibility
to change code. Because of performance reasons or maintenance reasons. In a
CI context, the state of the integration should be known after each build, but this
is greatly complicated if there is no automatic support to synchronize models or
check consistency between them. “Using more models would be hard if there
are no consistency checks, because if they are standalone they will never be the
same.” Furthermore, mistakes due to model inconsistencies can be propagated
more rapidly in a CI context.

Towards the same goals of creating an automated pipeline for building
and testing, model validation is required, but typically minimally in place.
This refers to syntax checking within models, since automation requires more
formality from the included models, as well as consistency checking between
models. The former is often in place inside modelling tools, but are not always
used: “Continuous validation of the model would be very convenient, the first
step would be to get help from the tool in validating. Just get rid of all these
stupid errors that you might introduce. For example, scoping, some of these
errors have really serious consequences.” When models are used only for
communicating designs, even less strict validation is desired by some engineers,
for example the ability to write free text in some models. Consistency checking
between models is hampered by the previously mentioned impediment of tool
interoperability, but not felt so strongly since the models are not explicitly
coupled. So, inconsistencies have no direct effects in terms of failing builds
or tests, but rather may subtly affect the subsequent development, possibly
incurring late and costly changes if they are noticed late. The validation of
system design models is completely manual, since they are not connected to the
implementation models. These manual actions do not scale to larger models or
more rapid iterations and are thus hampering the move towards CI.

A common impediment to introducing MBD in industrial settings is the lack
of good version control systems for models, one part of the broader challenge of
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collaborating effectively on models. As one interviewee said: “for us system
engineers, this is one of the hardest parts, to share the model and not interfere
with each other more than we have to.” Different to code, line-based diffs of
XML representations of models are not helpful in indicating the differences
between models and merging them. Particularly, the graphical representations
of models are difficult to version, which is problematic especially when models
grow large (and they typically do). Engineers mention a lack of model differenc-
ing in current practice: “We have no good ways to merge models. It’s even worse,
we have no good ways of comparing models.” As well as too many manual steps
required to obtain differences. “There is no really good way to get a delta out of
the model. To get that delta the system engineer manually has to go through and
mark what is changed. To make a diff on the model, we don’t have any good
tools to do that.” In practice, the lack of faith in merging has two consequences.
First, merging is circumvented by locking models for changes, thus avoiding the
need to merge. Second, the system design is divided and tasks are assigned in
such a way that the need for concurrent changes to the same model are avoided
as much as possible. Locking models is a good enough solution for small teams,
but already involved “a lot of legwork”, where intense communication was
required between engineers to allow synchronous collaboration. So, locking
does not scale well to larger and possibly distributed teams. It also impedes the
introduction of more rapid iterations on the models. The strict division of the
model is similarly impeding the agility of development. Rather, each contrib-
utor should be able to make changes at any place in the system. This lack of
support for merging drives both these sub-optimal and non-scaling development
practices. Notably, configuring the CI pipeline for automatic merging was also
named as the biggest overcome challenge in company 3 and something that still
can be improved to allow for more parallel work.

Version control is one of the components of configuration management,
which manages among other things the change history and deployment of spe-
cific versions of the software on specific platforms. In general, in software
engineering, configuration management is challenging, especially when soft-
ware needs to be supported for a long time (possible decades) after it is first
produced, thus requiring the possibilities to make changes and test them in old
configurations. This is also a challenge in MBD, and a problem when trying
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to do MBD in more rapid iterations, since the tooling ecosystems are typically
fragile. “I think configuration management and better tooling are what we
need.”

Non-functional

In this category, we include those impediments that are not directly related
to current tooling or other technical problems, but are rather related to non-
functional elements such as current practices and development processes. A
first example of a current practice hindering the introduction of more frequently
integrating is the duration of builds and regression tests. In a similar vein, a large
amount of computation power is required for extensive simulations including
all models. Initially, such problems can be (and have been, by company 3)
avoided by allocating more computing power to these tasks. But this is of
course addressing the symptom and not the cause, and will eventually also be
insufficient. This is not an insurmountable problem, but it is one of the practical
hinders that are encountered when introducing agile MBD processes.

Another such practical problem is partly caused by the current division of
development teams between system modellers and software designers. Changes
in a system model impact lower level models, but to the system modellers, it
is not always clear how. This also works the other way around; the software
designers are not aware of the exact changes in the system model and the entailed
required changes in software models. Both effects are strengthened by the size
and complexity of the models: “the (system) model is complex organized, the
developers don’t know where to look for information.” Consequently, communi-
cation, sometimes through documentation, is needed to align the activities of
different modellers. This also does not scale well to larger settings and more
rapid iterations. The alternative, more formal and tool supported impact analysis,
requires a more formal usage of the models. If the system models are only
used to communicate design and do not strictly adhere to some syntax, or do
not capture the exact semantics, then trying to automatically assess impact of
changes is hopeless.

Naturally, an implementation of CI will require several tools, current manual
practices are not good enough to just be done more frequently. “There are too
many manual steps, too little automation.” It is therefore not a good sign that
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already, often ventilated frustrations have to do with tooling. “It is slowing
us down.” Or, as indicated by another quote regarding using modelling in
more phases of development: “The modelling tool is not so stable, it crashes
and it freezes and everything goes slow. You want to have quicker tools, if it
was quicker and easy to understand then you could use it more.” While tool
instability is not a hinder only to introducing CI, since it also hindering current
MBD practices, it is still relevant to mention here, since the potential benefit
of introduction of CI in MBD depends heavily on tool support. These are
comments about single modelling tools and contribute to a skeptical view about
involving more automation in the development process. “People don’t want to
use 5 to 10 different tools.” One interviewee described current CI practices, for
non-MBD projects, as involving “a lot of small steps and something is always
broken.” Given earlier comments on tool interoperability and tool instability,
the interviewees seem not to expect that this is getting any easier when setting
up a CI pipeline for MBD.

Humans

When discussing these functional and non-functional impediments, we cannot
overlook the human aspects, which remain present even if perfect tools are
created and used in the perfect process. Most of these impediments have to do
with the inherent complexity of modelling, “not enough people know SysML.”
Furthermore, a steep learning curve needs to be overcome to start contributing
to models, “it is hard to learn how to model, it takes time to be a good software
modeller and it is even harder to be a good system engineer.” Besides this general
modelling knowledge, the complexity of the product sometimes just requires
a lot of experience. “Some parts require so much domain knowledge that you
probably need to work here for ten years before you can contribute.” This
contributes to a lack of willingness to learn modelling, it seems that modelling
has an image problem, people are scared off and do not want to model, despite
the views of some interviewees: “it’s fun to model.”

Another human factor is a lack of alignment between modelling practices
of different developers. Different styles of modelling can lead to different sub-
divisions of models, and difficulties in understanding large models, if parts are
created in different ways. This is a problem similar to traditional, code-based
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software development, in which the use and enforcement of coding standards
is well established. For this aspect, the main difference between the code and
model-based industrial practice is tool support. Several interviewees remarked
that the tooling lacks, e.g., checking of conformance of models to design guide-
lines.

Business

In addition to these human factors, impediments were mentioned that are related
to the business perspective. Any change in process and tooling requires an
investment, be it time, money, or both. The advantage of introducing these
processes is often not easily quantified, making it difficult to gather support for
them.

A difficulty in achieving a complete modelling pipeline can also be to get
all involved disciplines in a company on board. A coupling between models
from different domains is desired, but a lack of willingness and resources to
do so hinders this synchronization between parts of a company. It might be
that engineers estimate the amount of required resources as high, due to other
functional or process impediments they see.

Further, engineers mentioned a lack of time and knowledge to invest in
setting up a toolchain. Especially considering the need for customization of such
toolchains, since almost no two companies are working with the same sets of
tools. Furthermore, this customization depends on the type of product developed.

“It depends a lot on the domain what the generated code should exactly look like.”
The domain furthermore impacts the required lifetime of products, complicating,
as mentioned earlier, configuration management. Another related challenge that
might apply is the need for the developed code to conform to strict regulations
and certifications.

7.3.4 Future visions

Some alternative future visions were proposed, which would make this more
useful and more possible. One of them describes an extension of existing tooling
in to other modelling domains, such that all modelling activities, from system
architecture to software implementation, can be performed in a single tool. An
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alternative vision assumes that engineers from each domain will keep using
their preferred tools, but aims rather at better interactions between these tools.
Ultimately, both these visions allow for CI involving all models, by resolving one
of the main seen impediments by practitioners: a lack of tool interoperability.

7.4 Discussion

The identified challenges in Section 7.3 paint part of the picture of the impedi-
ments towards adoption of CI in industrial MBD practice, by considering the
different points of view from the different industrial partners. Still, the sample
size is not big and we should be careful to generalize our findings to cases in
which CI and MBD are adopted to different degrees than in the interviewed
companies.

The division of the impediments in the different categories emphasizes
the broadness of the encountered challenges. Indeed, a silver bullet does not
exist, rather, it is a long process to introduce modelling and then CI in industry
practice. While for our research, the functional and non-functional aspects are
the most interesting to focus on, the human and business aspects should not be
disregarded.

Considering the adoption of CI in modelling in the involved companies,
it is noteworthy that in company 3, modelling and CI works well, using a
single modelling language. Company 2 as well uses a single modelling tool for
software models and develops them in rapid iterations. Tool interoperability and
model interoperability is in these cases to a large extent avoided. Nevertheless,
implementing a CI pipeline in which models are included for system design,
detailed design, and implementation requires information sharing between these
models and thus communication between the tools in which they are created.
Indeed, these two elements are central to introducing CI in MBD and they
make resolving the other named impediments more complicated. For example,
impact analysis is more complicated when the impact must be assessed across
modelling languages.

Considering these findings in another way, we can say that there are few im-
pediments to introducing CI when modelling for code generation using a single
modelling language. Rather, most of the found impediments are encountered
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when models are also used in other parts of development, such as system design.
Then, maintaining sound architectures and consistency between the models
is increasingly challenging, particularly in a CI environment. An apparently
practiced way to circumvent many of these impediments is by applying CI only
to the lowest level models, those used for code generation, while manually
managing the correctness of the other models. The downside of this way of
working is that it benefits minimally from one of the main promises of CI, i.e.,
always having an overview of the state of integration, since that state cannot be
completely known using only implementation models.

As also found, introducing CI is not always the desired approach, we have
seen a current way of working in which introducing more frequent integrations
is not useful. In that case, because there is a strict separation between design
and implementation and because many manual steps are involved that would not
scale up appropriately. It should be noted that the starting point of a company is
crucial in how engineers view this aspect, conservative views are natural given a
well-functioning process and foreseen serious impediments to changing them.
Furthermore, if the benefits of their introduction are not clear, gathering support
for CI practices is difficult. Finally, the domains in which the companies work
and the traditions that those bring with them seem to impact the willingness to
adopt faster development cycles.

7.5 Related work

Our study has underscored some results that were found earlier, when investigat-
ing the adoption of modelling practices in industry. In their experience report
from 2005, Baker, Loh, and Weil [2] already note a lack of performance of tools
and interoperability between different tools. Other empirical studies also point
to tools as impeding more MBD adoption [4]. In addition to these technical
issues, Hutchinson, Whittle, and Rouncefield [15], also using semi-structured in-
terviews, find organizational (process and business-caused) factors important to
the success or failure of their introduction. Recently, an evaluation of industrial
MBD practice shows its potential benefits but also highlights the difficulties in
its adoption, particularly tool interoperability and a steep learning curve of the
method itself and tools used for it [5].
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In a similar industrial context as our study, an interview study has shown
the state of practice and impediments to introducing continuous deployment in
agile software development projects [16]. While the paper does not consider
modelling, it does identify some impediments that are also relevant in our
case. Notably, in companies moving towards CI, one of the impediments is the
complexity of test automation. This aspect is underexposed in our interviews,
possibly because many of interviewees were doing system modelling and did
not operate closer to the implementation.

Another interview study involving large industrial partners identifies four cat-
egories of impediments to introducing CI, albeit not in modelling projects [17].
The categories identified in that work are related to testing processes, the usabil-
ity of tools, the splitting of the system into parts and the division of work among
engineers. Some overlap can be noticed between those results and our results,
particularly the impediments related to the process.

In our earlier work [18], we have reviewed modelling tools and their suit-
ability to be applied in the context of CI and MBD. There, we concluded CI is
achievable when using a single modelling tool, albeit possibly challenging to set
up, but much more challenging when using a combination of modelling tools.
This aligns with our findings in this work, where we have seen one company
where a pipeline is implemented, but for a single tool. Further, we have seen in
all companies that introducing or streamlining CI practices raises challenges in
tool interoperability, and model interoperability, when using different modelling
tools and modelling languages.

A systematic literature review in the area of combining agile methods (of
which CI is one) and modelling has shown the immaturity of the field [19]. In
particular, the authors have argued for more reports on industrial experiences.
One such study focused on introducing agile practices in modelling projects
in the automotive industry [10], although not including CI yet, the authors do
report a successful application of agile methods. Similarly, a case study in the
telecommunications domain has shown benefits of agile MBD [9], although
it minimally discusses the extent to which this practice includes continuous
integration. This paper contributes to this knowledge base by exploring views
and current practices of industry practitioners of agile development methods in
MBD projects.
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Other work has reported on experiences of introducing CI in an MBD
project [11]. The authors show the benefits from combining CI and MBD to
the development process and discuss hurdles overcome to achieve this. An
impediment identified in common with this work is the lack of support for
differencing and merging of models.

Other work has considered practical applications of CI in the automotive
domain [20]. While not explicitly about modelling, some identified impediments
are closely related to our findings. In particular the many manual steps that are
performed to move data in between tools, due to a lack of tool interoperability.
Further, the authors identify many organizational issues, besides the tooling,
which we have touched upon in the category of business impediments.

Although not evaluated in industrial practice, some initial works have
sketched the possibilities to wrap modelling tools for each step in the pro-
cess of modelling to validation in a continuous delivery pipeline [21]. This
addresses the tool interoperability challenge for one specific set of tools. The
authors stress the need for maturity of individual tools and steps in the pipeline
and summarize the challenges of creating a CI pipeline for models by stating
that all steps in it should be “model-aware.”

7.6 Conclusion

In this work, we have identified several impediments to introducing continuous
integration (CI) in model-based development (MBD) through eleven interviews
at three large companies. Furthermore, we have discussed how some of those
impediments are circumvented in current practice. The three companies each
have a different current way of working and therefore a different starting point
when introducing or streamlining existing CI practices. Some starting points
imply that introducing CI is not desired by engineers. Other starting points did
see an embrace the idea of combining CI and MBD, but several impediments
were named towards that goal. We have categorized these impediments as
functional, non-functional, human, and business-related.

To broaden the coverage of our findings, in future extensions of this work,
we aim to include more companies on different positions in the graph in Fig-
ure 7.3. For instance, by including companies that are doing more modelling
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than company 2 and less CI than company 3. Moreover, we aim to include
companies that have implemented more explicit links between all models.

To answer the research question posed in the introduction: the impediments
to applying continuous integration in MBD projects are summarized in Table 7.1
and in addition also implicitly include general impediments to introducing MBD.
Our two main findings of this interview study are 1) that introducing CI is not
always desirable or useful given a current way of working, and 2) workarounds
to common problems of tool interoperability and model synchronization are
impeding the introduction of an automated CI pipeline for MBD.
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Abstract

In model-based development projects, models at different abstraction levels
capture different aspects of a software system, e.g., specification or design.
Inconsistencies between these models can cause inefficient and incorrect devel-
opment. A tool-based framework to assist developers creating and maintaining
models conforming to different languages (i.e. heterogeneous models) and
consistency between them is not only important but also much needed in prac-
tice. In this work, we focus on assisting developers bringing about multi-view
consistency in the context of agile model-based development, through frequent,
lightweight consistency checks across views and between heterogeneous models.
The checks are lightweight in the sense that they are easy to create, edit, use and
maintain, and since they find inconsistencies but do not attempt to automatically
resolve them. With respect to ease of use, we explicitly separate the two main
concerns in defining consistency checks, being (i) which modelling elements
across heterogeneous models should be consistent with each other and (ii) what
constitutes consistency between them. We assess the feasibility and illustrate
the potential usefulness of our consistency checking approach, from an indus-
trial agile model-based development point-of-view, through a proof-of-concept
implementation on a sample project leveraging models expressed in SysML
and Simulink. A continuous integration pipeline hosts the initial definition and
subsequent execution of consistency checks, it is also the place where the user
can view results of consistency checks and reconfigure them.
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8.1 Introduction

The Model-Based Development (MBD) paradigm holds the promise of im-
proving productivity of the development process by promoting models as core
artifacts, particularly in early development phases, i.e., specification and de-
sign [1]. Further, models are also used for advanced development activities such
as simulation and code generation. Besides, in industrial contexts, models as
main project artifacts play an important role in documentation and communi-
cation between different development teams [2]. Models are becoming critical
assets for development of industrial systems and software, not only within single
projects but over several projects through model reuse. In modern industrial
MBD practice, software systems are modelled through multiple views, using
so-called multi-view modelling [3].

Views are represented by heterogeneous models, i.e., models conforming to
different modelling languages (often created with different tools, which com-
plicates consistency checking). Usually, these views are exploited by different
teams and for different aspects of development. Consider the context shown
in Figure 8.1, where a system model, created by system designers to describe

System View

Software View Software model  
(e.g. Simulink)

System Model 
(e.g. SysML)

Developer

Commit changes  
to VCS Build Consistency  

Checking 
Create new model

iterations

CI Pipeline Developer

Inspect  
results Ignore checks

Repair  
inconsistencies 

Configure 
consistency 

checks 

Software model 
(e.g. UML)

Other possible consistency relations
Consistency investigated in our proof-of-concept

Figure 8.1. Illustrating the scope of our approach, a tool performing inter-model
consistency checking between heterogeneous models and notifying the developer about

inconsistencies.
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architectural matters, is refined into a set of software models by the software
designers. In many cases, models across different views are closely related and
they may partially overlap since they describe the same parts of a system. The
use of multiple (often partially overlapping) views requires a careful checking
and maintenance of consistency among them. Consistent models are in fact
essential to ensure a coherent design as well as efficiency and correctness in
the development process. While complete consistency (at any time in the de-
velopment) may not be achievable or desirable, lingering inconsistencies can
snowball into serious issues if not identified in early phases of development.
A way to prevent this is to notify the developer about inconsistencies between
models soon after their introduction, by means of consistency checking.

Consistency checking within a model (i.e. intra-model consistency), or
between models conforming to the same modelling language, is often available
in modelling tools. We focus on checking inter-model consistency between
heterogeneous models, which is a more complex endeavour for several reasons.
Firstly, inter-model consistency often requires the ability to interact with a
set of different modelling tools and processes in an industrial MBD context.
Changes in this ecosystem are hard to make. Replacing a modelling tool to
be able to perform inter-model consistency checks is often not feasible and
any additional tool should not interfere with the existing ecosystem. Similarly,
existing development processes are not easily changed, additional actions would
be performed reluctantly in the best case, or skipped in the worst case, if they
disrupt existing processes. Secondly, when consistency checks require a steep
learning curve or excessive effort to create or maintain, the intended users may
be discouraged from using them in the first place. Existing approaches, e.g.
those based on Triple Graph Grammars [4] or link-models [5], are powerful but
complex, hence requiring considerable effort to define and maintain consistency
checks.

The context of this research is represented by an academia-industry collab-
oration called Software Center1 and composed of 12 large companies and 5
universities. Among our industrial partners in Software Center, there is a clear
trend of model-based development going agile. Very short cycles, typical of
agile development, complicate consistency checking, especially if it requires a

1www.software-center.se
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large effort in defining, maintaining and executing consistency checks. A conse-
quence is that there is a need for a lightweight consistency checking approach.
Lightweight means that it shall infringe minimally on existing development pro-
cesses and tools, but aid developers in easily monitoring inter-model consistency.
This kind of approach is currently lacking and much desired by practitioners.

In this paper, we show an application of consistency checking between
heterogeneous models. We motivate requirements for a lightweight approach
in Section 8.2, present a generic approach that satisfies these requirements
in Section 8.3, and show an implementation of this approach in Section 8.4.
Limitations and potential extensions to our approach are discussed in Section 8.5,
a relevant portion of the extensive related work about consistency management
is discussed in Section 8.6, while conclusions and some prospects of future work
are included in Section 8.7.

8.2 Scope

We have already introduced the need for lightweight consistency checking. This
section describes further our target industrial MBD context. From it, we derive
a set of requirements for a lightweight consistency checking approach that is
useful and usable in practice.

8.2.1 Industrial context of consistency checking

Multi-view modelling refers to a practice in which a system is designed using
multiple models (each of which representing a specific modelling view), poten-
tially created in different tools and described by means of different languages [6].
Different models may describe the system under development, or just part of
it, at different levels of abstraction and from different stakeholder perspectives,
such as requirements engineer, system designer, or software developer. Yet,
these models are commonly not disjoint, since they describe (parts of) the same
system. There is often an explicit overlap, where multiple models describe, in
the same or different levels of detail, the same parts of the system.

Kolovos et al. [7] classify the relationships between models that induce this
overlap, of these, the most relevant in industrial practice are “uses”, “refines”,
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“complements”, “alternative for”, and “aspect of”. Due to the nature of these
relationships, they are highly correlated to the structure of the models. Kolovos
et al. [7] go on to classify types of inconsistencies that can occur between over-
lapping models, the ones relevant to us are “incompleteness”, “contradiction”,
“misuse”, and “redundancy.” Intuitively, a comparison of the structure of two
overlapping heterogeneous models would show these types of inconsistency at a
glance. While these relationships can occur between any pair of models, in our
industrial context, we are primarily interested in consistency between models
across different levels of abstraction, i.e., vertical inter-model consistency [8].

For example, let us consider a system model containing a SysML block B
with two ports, P1 and P2. During system specification, the system designer
might model parts of the system as a “black box”, i.e., stop modelling at this
level of abstraction and only care about the interfaces between blocks. Software
designers on the other hand, as part of the system design, would model this as a
“white-box”, down to a more detailed level. They might, for instance, create a
Simulink model S that describes B in more detail, with input and output ports
corresponding to P1 and P2, and with additional details not included in B. This
type of view relation between models S and B is commonly called refinement
from S to B, or abstraction from B to S, respectively [9]. Other examples
of these refinement relations include the one between a SysML model and an
EPLAN2 model to capture hydraulic schematics and between a SysML model
and a Modelica model capturing the control system and dynamic behaviour, as
exemplified in [10].

Figure 8.1 shows an overview of an industrial MBD context for which our
proposed consistency checking is intended. Model inconsistencies across views,
and thereby across e.g. specification, design, and implementation, complicate
the development and evolution of systems. Inconsistencies shall never uncon-
trollably spread through the system design and one way to avoid this issue is by
introducing consistency checks to support developers in identifying, at an early
stage, possible inconsistencies in the system under development. Therefore, as
shown in Figure 8.1, the development team is aided, during development and
evolution of the architectural and software models, in keeping these models con-
sistent through lightweight checks that indicate discrepancies in the structures

2https://www.eplanusa.com/us/home/
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of the created models. Note that in the different views, several heterogeneous
models could exist, for example UML models in the software view (as shown in
Figure 8.1). We highlight the generic applicability of our approach by choosing
different languages in the example shown in Section 8.4.

To summarize, usable consistency checking, to ensure that models express
overlapping concepts from different point of views without contradicting each
other [11], is pivotal for multi-view modelling approaches to be efficient. For
industrial adoption, tool support is vital, too. Next, we elaborate on which
requirements an industrial application of such a consistency checking mechanism
entails.

8.2.2 Requirements

Since models conforming to different languages are typically designed using
different tools and ensuring consistency is often a manual task, inconsistencies
between them could remain unnoticed for considerable time during development.
This is particularly true when models are created in different views and for
different aspects of the development. Let us exemplify in the context shown
in Figure 8.1. During the specification and design of a car, a system model
denotes the overall design of the car and more detailed models are designed to
describe software, electronics, braking system, etc. A possible inconsistency
could be introduced between the structural model, conforming to SysML, and
the refining functional model, conforming to Simulink, that fails to refine a
particular block of interest as defined in the structural model. We aim to support
the checking of vertical consistency between heterogeneous models in cases
where models are related by one of the aforementioned relations and a certain
overlap in the structure of the models exists. As already mentioned, notifying
developers of possible inconsistencies of this type is considered as very helpful
in industrial practice, given the complexity of the systems and the distribution
of the development efforts.

Overlaps causing possible inconsistencies are, in most cases, not one-to-one
relations between entire models, nor between model elements at the same granu-
larity level. Rather, since different models describe the same parts of the system
at different levels of abstraction, the overlap is more likely to spread across
the different levels of granularity, e.g. an entire model refining a subsystem,
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or a package of multiple blocks refining a model. For example, in the case of
SysML and Simulink models describing the same system, a Simulink subsystem
might not map one-to-one to a SysML block, but rather the SysML block might
be refined via an entire Simulink model, containing several subsystems. Our
approach allows the definition of consistency checks between related model ele-
ments across different languages and granularity levels. Since model elements
may represent complex sub-models (a model element being the container root of
a sub-tree of contained model elements), our approach should be able to recur-
sively execute consistency checks too, to account for hierarchical compositions
and containments across models.

The need for consistency checking becomes more pressing when companies
adopt agile multi-view modelling, in particular, when the development includes
continuous integration (CI). CI refers to the practice in which developers inte-
grate their work frequently, multiple times per day, in a shared repository [12]. In
this context, inconsistencies between heterogeneous models are easy to overlook
but nevertheless important to identify as soon as possible, to prevent them from
rapidly spreading to related artefacts. Agile development implies that models are
developed in short iterations and in parallel with other models. Consequently,
any of the overlapping models can be seen as anticipating changes in the others
at any time during development, e.g., the system model may not yet contain
concepts already described in software models and vice versa. In these settings,
inconsistencies are inevitable and almost required, since forbidding them would
hinder the concurrent and incremental nature of agile. Automatic resolution
is undesirable too, since in most cases it can not be determined which of the
involved models should be reconciled in a scenario where any can be anticipat-
ing the others. Moreover, temporary inconsistencies are sometimes required to
allow for particular development activities [13]. Therefore, we want to allow
developers to choose if and how to act on detected inconsistencies. For this
reason, we propose a consistency checking approach that identifies and indicates
inconsistencies to the developers, without enforcing their resolution.

The frequency by which inconsistencies are presented to the developer, if
not on-demand, is a sensitive matter: if too frequent, it becomes annoying, if too
seldom, it becomes irrelevant. The CI pipeline provides a middle-ground, where
inconsistencies can and should be presented at the time of pushing changes to
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the shared repository. Furthermore, it provides an environment independent of
any particular modelling tool, where to configure consistency checks and view
their results.

Industrial MBD practice typically involves many different tools, modelling
languages, and development processes. Often, techniques fail because the pro-
cess view is not taken into account. For example, because for the introduction
of consistency checks, large changes to this environment, or to existing de-
velopment process, are undesirable. Therefore, our approach should have a
small footprint, i.e., be a minimal addition to existing MBD environment and a
minimal added effort in existing development processes and ways of working.
We aim for the application of consistency checks in an agile MBD process and
in particular in a CI pipeline, so we must also minimize their interference with
the developer flow. Consistency checks should thus also be lightweight with
respect to the required effort to create, maintain, and use them. The checks
themselves should be frequently executed, applicable to multiple languages and
allowing for checking consistency across granularity and abstraction levels.

Table 8.1 summarizes the requirements described in this section and their
motivation. Our goal is to provide an approach, and tool support, for detection
and notification of inter-model inconsistencies, across heterogeneous models
and in a CI pipeline for agile MBD projects. We focus on structural equivalence
between model elements or parts of models, as well as for structural refinement
between model elements and parts of models.

8.3 Our consistency-checking approach

In this section we outline the constituents of our approach for checking consis-
tency between models expressed in different views and languages.

The types of consistency interesting for the developer depend on the involved
modelling languages and the system under development. Hence, the meaning
of consistency cannot be decided a priori, but should rather be specified by the
person defining the consistency checks. In some existing consistency checking
approaches, the meaning of consistency is captured in an intermediate translation,
like a case by case dictionary, formally defining how to compare model elements
between different models (and languages). An example of fixed medium to
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Table 8.1. Industrial practice (left) and the corresponding requirements (with ID) they
entail (right).

During development, models are: So, consistency checks should:
Created in different languages and
tools.

R1. Check inter-language consis-
tency.

Partly overlapping. R2. Compare the structure of mod-
els.

Related by refinement or equivalence
at between model elements.

R3. Allow consistency definition
across model elements at different
granularity.

Purposefully, temporarily, inconsis-
tent.

R4. Not attempt automatic resolu-
tion.

Changed continuously. R5. Be executed frequently.
Created in complex environments. R6. Have a minimal impact to the

existing environment.
Created in complex processes. R7. Be easy to create, use and main-

tain.

express these ‘dictionary entries’ is Triple Graph Grammars (TGGs) [4]; this
and other related mechanisms are discussed in more detail in Section 8.6.

In these approaches, each dictionary entry (mapping) describes two types of
information. The first maps meta-model elements between different languages
and how to check consistency between them. The second denotes model el-
ements, across heterogeneous models, between which consistency should be
checked. The user is expected to define both for each entry. In our approach,
we propose to simplify the task of creating these entries by splitting the two
information types as follows.

Mappings between meta-model elements across different languages and
the definition of the various kinds of consistency that can be checked (e.g.,
name equivalence) are described in language3 consistency mappings. Mappings
of model elements, across heterogeneous models, between which consistency

3Note that in the paper we use ‘language’ and ‘modelling language’ interchangeably as
synonyms.
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should be checked and which specific kind of consistency to check are described
in model consistency mappings. The user is only concerned with declaring and
maintaining model consistency mappings, while the labor invested in creating
language consistency mappings is limited to a one-time effort, unless the lan-
guage undergoes changes. This makes the usage of our approach lightweight.
Since we are dealing with heterogeneous models, in order to be able to compare
them, and thereby check consistency, we need to represent them in a common
notation.

A consistency check CC is composed of one language consistency mapping
LCmap and one model consistency mapping MCmap . The remainder of this
section presents LCmap and MCmap in detail and shows an overview of all the
steps required for the definition and execution of consistency checks.

8.3.1 Language consistency mapping

A language consistency mapping LCmap consists of:

(1) a relation between different languages (at meta-element level), and

(2) the definition of consistency types.

As mentioned before, we aim at checking consistency by comparing models
structure and their hierarchical nature. To structurally compare two heteroge-
neous models, we need to bring them to a common notation that highlights
their structure. We opted for a tree-based notation since it permits to capture
structures, and hierarchies, in a convenient and compact way. Furthermore, it is
generic enough to represent models conforming to, potentially, any modelling
language that entails structural modelling in a hierarchical fashion. Since we
address in this case specifically comparisons of model structures, a tree structure
suffices. In more general cases, more generic structures would be more appro-
priate. A tree is an abstract representation of a non-empty set of model elements,
which precisely reproduces the model hierarchical structure. Model elements
become nodes.

For example, in the case of Simulink models, blocks, subsystems and ports
can be mapped to tree nodes, together with their hierarchical structure, whereas
the operations inside blocks are not. Figure 8.2 shows an example of tree
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representation of a Simulink model, where “distiller” contains a subsystem
“Distiller”, which in turn contains subsystems “Heat_Exchanger” and “Boiler”,
which are in that hierarchy mapped to nodes in the tree.

Nodes inherit names from respective model elements and they are assigned
an abstract type for comparison purposes (e.g., a Simulink inport and a SysML
flowport become nodes of type ‘port’). Types can be leveraged to check consis-
tency in cases where name equivalence does not hold. For example, to check that
two blocks, one in a SysML model and another in a Simulink model, contain
the same number of ‘ports’, regardless of the names of these blocks and ports.

A LCmap between language LA and language LB consists of:

(1) two separate transpositions, from LA and LB to a tree-based notation
TN , and

(2) a set of comparison rules between LA and LB (e.g. name equivalence)
done at the TN level.

Figure 8.3 shows how a LCmap is used for comparing models. Technically, two
models MA conforming to LA, and MB conforming to LB , are transposed into
two corresponding trees TA and TB , conforming to TN , and comparisons are
done between TA and TB .

Our proof-of-concept implementation provides two comparison rules, one
for equivalence and one for refinement, exemplified in Figure 8.4. Since we
can do comparison based on node names, types, and structure of their tree
representations, we defined three levels of consistency strictness:

• Strict: when comparisons are based on node names, types and structure;

• Intermediate: when comparisons are based on node types and structure;

• Loose: when comparisons are based on structure only.

Equivalence between nodes nA ∈ TA and nB ∈ TB is defined as follows,
with respect to the strictness levels:

• Strict: nA and nB have the same name and type and the same number of
children; in addition, each child of nA has a strict equivalence to a child
in nB and vice versa;
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Figure 8.2. Example of a transposition of a Simulink model to tree. Subsystems and
ports are mapped to nodes in the tree, but not the simulation blocks inside the

subsystems. The Simulink model is inspired by the well-known SysML Distiller
example model [14].

• Intermediate: nA and nB have the same type, the same number of children;
in addition each child of nA has an intermediate equivalence to a child in
nB and vice versa;

• Loose: nA and nB have the same number of children; in addition, each
child of nA has a loose equivalence to a child in nB and vice versa.
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TN 

Figure 8.3. LCmap consists of separate transpositions from both languages to a
tree-based notation and a number of comparison rules. When executing a consistency
check, automated model transformations transpose models into trees, between which

automated comparison is run.

Refinement between nodes nA ∈ TA and nB ∈ TB , where nB refines nA,
is a directed relation defined as follows, with respect to the strictness levels:

• Strict: nB has at least the same number of children of nA and each child
of nA has a strict equivalence to a child in nB .

• Intermediate: nB has at least the same number of children of nA and each
child of nA has an intermediate equivalence to a child in nB .

Note that we do not define loose refinement, since its checking would not lead
to meaningful inconsistencies.

Comparison rules – equivalence or refinement – can be defined between any
pair of nodes nA ∈ TA and nB ∈ TB , also when placed at different hierarchical
levels in the respective trees. For two trees to be consistent (either through
equivalence or refinement), their root nodes should be consistent. This also
means that, if comparison rules are defined between roots of sub-trees, then all
nodes above them would not be considered for consistency checking.
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Figure 8.4. Examples of an equivalence relation and a refinement relation between TA

and TB . Node C in TA is strictly equivalent to node C in TB and node B in TB strictly
refines B in TA.

8.3.2 Model consistency mapping

A consistency check CC requires, in addition to a LCmap , a model consistency
mapping MCmap , which consists of:

• two model elements, between which consistency should be checked,

• the type of consistency to check, and

• the level of consistency strictness.

To define MCmap , the user only needs to configure these three parameters.
Automated mechanisms implementing LCmap , and the comparison rules defined
in it, are then responsible for generating and executing the consistency checks.
Once defined, CC can be executed at any time throughout the evolution of the
entailed models, with the possibility to adjust its configuration if needed. Future
extensions of our approach will reduce the effort of defining consistency checks
by automated support, for instance by suggesting model consistency mappings
based on potential matches identified through a similarity analysis between the
heterogeneous models to be compared.

As mentioned in the explanation of language consistency mappings, the
tree-based notation allows to easily compare models and their elements, also
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Figure 8.5. Example of possible model consistency mappings between an abstract
model A, refined by a model B. The dashed lines indicate possible refinement relations

at different granularity levels.

when placed at different hierarchical levels. Figure 8.5 illustrates examples of
model consistency mappings. For instance, model B could be a refinement of
model A, or parts of it, such as sub-model X or elements p or q. Similarly, parts
of model B, for example sub-model Y , could refine sub-model X or element
q. Lower level mappings are possible too: for example element r in model B
refining element q in model A.

These model consistency mappings relate two model elements, but can be
used to check consistency between more than two model elements, by chaining
consistency checks. For example, to check that elements a, b, and c are equiva-
lent, two consistency checks can be defined, one checking that a is equivalent
to b and the other checking that b is equivalent to c. Future extensions of our
approach will support grouping these checks such that one result summarizes all
of them. For instance, if in the above example a is equivalent to b but b not to c,
the grouped check would fail too.

8.3.3 Continuous integration pipeline

The execution of consistency checks is embedded in the CI pipeline, triggered
by a model change that is pushed to a common repository, and executed after
a build. A high-level description of the execution and configuration of a CC
consists of the following steps:

1. MCmap is evaluated. Consider a mapping between model element eA
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of model MA in language LA and a model element eB of model MB in
language LB

(a) LCmap between LA and LB is used to create trees TA and TB from
models MA and MB , respectively.

(b) In TA and TB , nodes corresponding to eA and eB are compared
using a comparison rule, corresponding to a combination of the type
of check (equivalence or refinement) and the strictness level (strict,
intermediate, or loose). Since comparison rules define a comparison
between nodes by including, recursively, their children, technically
the subtrees with root nodes represented by eA and eB are compared.

(c) The result of executing the CC is summarized as a binary outcome:
pass or fail. In case of a failed check, a summary of the reasons
behind the failure is shown to the user.

2. Configuration of existing model consistency mappings can be modified,
including options to mute or skip checks in future runs.

3. The user can also add or delete model consistency mappings.

8.4 Proof of concept

In this section we present a proof-of-concept implementation4 of our approach.
The approach is implemented as a plug-in for Jenkins5, a tool supporting au-
tomation of CI pipelines. In such a pipeline where a CI server is already in place
and used to monitor the state of the development, including our consistency
checks in both the process and toolset requires only a minimal overhead.

In the remainder of this section, we show the process of defining and exe-
cuting consistency checks on the Distiller example [14] and applying it to one
model consistency need that we identified exists in our industrial partners: a

4For the interested reader, the implementation is available at:
https://github.com/RobbertJongeling/consistency-plugin. A demo video
(https://github.com/RobbertJongeling/consistency-plugin/blob/master/Demo.mp4) show-
ing the approach at work is available in the GitHub repository too.

5https://jenkins.io/
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Figure 8.6. Simplified block definition diagram of the SysML distiller example [14].

functional Simulink model refining a structural SysML model. Two models are
created, one SysML model, shown in Figure 8.6, and one Simulink model which
refines selected subsystems of the SysML model, and which was shown earlier
in Figure 8.2.

Next, we briefly present the LCmap between the two entailed modelling
languages and illustrate the implemented plug-in at work through an example of
a consistency check definition and execution.

8.4.1 Language consistency mapping

To transform the structure of Simulink and SysML models to trees, we defined
two model transformations, which map concepts from the respective modelling
languages to a tree-based notation. Both transformations are implemented
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in Xtend6, to allow seamless integration with the Java implementation of the
Jenkins plug-in. Transformations take in input the model files as they persist in
the file system rather than requiring multiple interfacing with modelling tools.
The models are then parsed and model elements of interest, as defined in the
language consistency mappings, are added as nodes to a tree. In the current
implementation, LCmap is embodied in the model to tree transformations. We
are currently working on a more flexible implementation, where we will separate
the definition of LCmap from the model transformation implementation. Once
LCmap is defined, a set of higher-order model transformations will generate
specific model to tree transformations based on LCmap .

SysML. A subset of SysML diagrams is represented by structural diagrams,
i.e., block definition diagrams and internal block diagrams. In this work, we
focus on SysML models described in terms of these diagrams. In our tree-based
notation, the root node represents the entire SysML model and the tree hierarchy
reflects the structural hierarchy of the model. The root’s children are packages
or blocks. Packages can contain other packages and blocks, while blocks can
contain other blocks and ports. The SysML model in the running example
was created using Eclipse Papyrus7. The translation of the model to a tree is
performed taking in input the .uml file, which contains the model definition
(without diagrammatic information). In our transformations, we leverage the
EMF Ecore Resource facilities to programmatically access the contents of this
type of file.

Simulink. To parse Simulink models, from binary .slx or serialized .mdl
format, we rely on CQSE’s Simulink Library for Java8. As for the SysML
model, the root node of the tree represents the Simulink model. The children
nodes are then the SubSystems, Inports, and Outports contained in the models.
SubSystems can contain other SubSystem, Inports and Outports. Note that we
choose to omit certain types of blocks used to specifically implement Simulink

6https://www.eclipse.org/xtend/
7https://www.eclipse.org/papyrus/
8https://www.cqse.eu/en/products/simulink-library-for-java/overview/
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simulations, such as logic operations and data conversions, since they do not
affect the model structure.

8.4.2 A consistency checking tool

In this section we detail the approach steps enumerated in Section 8.3.

Defining model consistency mappings. Model consistency mappings are
defined inside the Jenkins plug-in, by selecting the model elements between
which consistency should be checked as well as the type and strictness of
those checks. Figure 8.7 shows an example of consistency check definition.
In our example, the type of model can be Simulink or SysML, but this can be
extended to any language for which a transformation to the tree-based notation is
implemented. When a modelling language is selected, the next drop-down box is
populated with all model files of that language in the Jenkins workspace. When
a file is selected, the next drop-down box is populated with all fully qualified
names (FQNs) of model elements in the model, as represented in the related tree.
Eventually, the strictness and type of check are selected. Note that, after checks
are executed, the user can select to mute or skip them in future runs. Before
executing the check, its result is set to NYE (Not Yet Executed), and no further
comments are available.

Post-build: run consistency checks. We have implemented the execution of
our consistency checks as a post-build action in Jenkins. After the build step,
the execution of the consistency checks is triggered and results are shown.

Comparing trees. The first step in executing a consistency check is to trans-
form the models to trees. Resulting trees for our running example are shown in
Figure 8.8, where the black nodes represent the model elements to be compared
(their selection in the MCmap can be seen in Figure 8.7. The refinement rela-
tion is now checked, not between the complete trees, but between the subtrees
starting at the black nodes.
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Figure 8.7. Example definition of a model consistency mapping in the Jenkins plug-in.
Here, the element Distiller of the Simulink model distiller_refined is said to strictly

refine the element Distiller in package DistillerPackage in the SysML DistillerExample
model.

View results and manage configuration. In this case, the consistency check
fails, since the model element in model A is not a refinement of the model
element in model B. The Valve is in fact missing in the Simulink model as
compared to the SysML model. This short explanation is shown in the result
field of the MCmap definition, as shown in Figure 8.9. More detailed logs are
available in the console output in Jenkins. A whole cycle of definition and
execution of consistency checks is now completed. New consistency checks can
be defined and existing ones edited or deleted. Model consistency mappings
can also be left unaltered to be run again in future builds, or set to be skipped
or muted. When a check is skipped, it is not executed in future builds, until the
user enables it again. When muted, a check is executed but its results are hidden,
unless they are different to previous results in its previous execution. This allows
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distiller_refined

Distiller

heat_in dirty_in Boiler Heat_Exchanger pure_out residue_out

qIn fIn f1Out f2Out cIn hIn hOut cOut

(a) Tree representation of the Simulink model, only including SubSystems and Ports.

distiller_example

DistillerPackage

Distiller

heat_in dirty_in Boiler Heat_Exchanger Valve pure_out residue_out

qIn fIn f1Out f2Out cIn hIn hOut cOut vIn vOut

(b) Tree representation of the SysML model, only including Blocks and Ports.

Figure 8.8. Tree representations of the Simulink and SysML models; the subtrees with
root nodes indicated in black are compared.
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Figure 8.9. Result message of the failed strict refinement check.

the user to mute reports on inconsistencies that are relevant but temporarily
tolerated, for example when modifying a model and before propagating the
changes to other related models.

8.5 Discussion

In this work, we have focused on lightweight consistency checking to help
developers discover structural inconsistencies between heterogeneous models.
In particular, we have considered the requirements (Rx) summarized in Table 8.1.
R1-R2-R3 are satisfied by choosing to construct an abstract tree representation
from models. Indeed, this allows checking between models in different lan-
guages, since we compare their representations in a common format, but more
importantly, this format represents the structural characteristics of the models,
enabling their comparison. Comparison rules are defined between tree nodes,
regardless of their position in the tree, so they enable consistency checking
between model elements at different levels of granularity, for example an entire
Simulink model can be compared to a single SysML block. R4 is fulfilled by
providing detailed feedback on detected inconsistencies to the user, but not
automatically resolving inconsistencies. R5-R6, regarding frequent execution
and minimal impact on the existing ecosystem of consistency checks, are sat-
isfied by the implementation of our approach in a CI pipeline. This provides
a natural environment for executing the defined checks frequently, while not
requiring a particular modelling tool nor notable changes to the development
process. R7 states that our approach should consist of consistency checks that
are easy to create, use, and maintain. This is satisfied by separating language
consistency mappings from model consistency mappings, requiring the user to
only input a small amount of information to generate and execute consistency
checks. These checks are defined once and executed at each integration, unless
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they are skipped, muted, or deleted by the user.
Evidently, the proof-of-concept implementation only focuses on a limited

industrial context characterized by multi-view modelling and consistency check-
ing, but we have argued its applicability in broader context. We exemplify our
approach by applying it to check consistency between a SysML and a Simulink
model, but the approach is generic enough to deal with many different situations
from industrial practice. For example, to check consistency between EAST-ADL
models and AUTOSAR models, UML models and Modellica models, or even
between architectural models and code. One of the powers of our approach
and implementation is that it can be easily extended to accommodate such
checks, requiring few extra things than a language consistency mapping for
those languages.

Applying the approach in those different scenarios requires generalizing it
beyond its main limitation, i.e., its entailed type of only structural consistency.
Such generalizations can be supported by opting for a different intermediate
notation than the current tree structure. When we consider a different metamodel
in this place, also the comparison algorithms can be extended to detect more
different types of inconsistencies. For example, when we consider not just the
structure of models but also values of variables, the intermediate notation should
also contain this information and then a comparison algorithm can be devised
that utilizes that information for inconsistency detection.

A smaller limitation, intrinsic to our approach, is a decreased level of control
over the case-by-case semantics of consistency checks. Instead, this has been for
ease of use: the user relies on a global language consistency mapping created
once and only specifies for each consistency check in a minimal way what
elements are to be checked for consistency and what type of consistency should
exist between them. The latter definition is reused throughout the evolution
of the models, the consistency check is executed whenever the models are
changed. The very limited effort required to use it together with the relevance
of the entailed spectrum of identifiable inconsistencies and its non-disruptive
nature, with regards to the development process to which it is applied, make our
approach promising for use in industrial contexts.

In the current implementation, we have focused on a specific example
relevant to industrial practice. To perform a full-scale industrial evaluation
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however, requires the implementation to be enhanced with additional language
consistency mappings and capabilities to check other types of inconsistencies.

8.6 Related work

Consistency among and within views is pivotal to ensure efficiency and cor-
rectness in the development process [15]. This work provides an approach to
lightweight consistency checking between heterogeneous models in a multi-view
modelling context. In particular, we study an industrial multi-view modelling
environment [2] in combination with agile development practices.

Dajsuren et al. [16], also consider consistency between different views.
Similarly to our approach, the authors prototype a tool for SysML structural
diagrams aimed at the automotive industry, but the underlying approach is
applicable to other languages as well. To enable comparison between models,
both are first expressed at the same level of abstraction. The resulting models are
compared as graphs to detect inconsistencies based on missing model elements
or relations in one model that are declared in the other model. In their approach,
model elements are annotated directly in the modelling tool to denote consistency
between model elements at the same granularity level. Similarly, our approach
aims to compare consistency between two different views with some structural
overlap, but in addition it allows for checks across heterogeneous models and
model elements at different granularity levels.

In this work, we create an abstract tree representation of models to enable
comparisons between them. Other works employ other formalisms to achieve
the same goal of being able to compare models in different languages. An
often used mechanism is Triple Graph Grammars (TGGs), which allow a formal
definition of the mapping of model concepts across different languages [4], for
instance between SysML and Modelica as done by Johnson et al. [17]. As
opposed to our approach, these approaches require a high effort in declaring and
maintaining the consistency checks.

The consistency checking approach proposed by Egyed allows for the cre-
ation of consistency rules in any formalism [18]. Notably, in this approach,
consistency checks are only executed when model elements they cover are
changed, thus improving over approaches in which batches of checks are exe-
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cuted periodically. It can be a valuable future enhancement of our approach to
similarly only execute those checks that relate model elements that have changed
since the last execution.

Another means capturing the specific way of comparing particular model
elements are link-models [5]. These link-models declare the relation between
parts of models, and constraints on that relation, by relating model elements
through particular types of links, equivalence, refinement or satisfies. The
link-models are then used to derive validation rules that can be automatically
executed. The applicability of this approach is limited to MOF-based models,
whereas our approach is meta-metamodel independent.

Similar to our approach, also graph structures have been proposed as an
intermediate representation of models as well as the starting point for detecting
inconsistencies [19]. There, the graphs represent logical facts contained in the
model, such that inconsistencies between graphs mean inconsistencies in the
models. In our approach, the tree denotes not such logical facts, but rather
focuses on the model structure.

In addition to approaches based on intermediate representations of models,
others have proposed different means of comparison between models. For
example, by declaring statements based on first-order logic to express facts that
should be true about models [20]. Later, these ideas were more matured and
generalized, for example in the Epsilon Object Language [21]. The advantage
of our approach relative to these approaches is that the developer is not tasked
with declaring such statements, since the meaning of consistency is captured in
the language consistency mapping and the developer just specifies which model
elements should be consistent.

The existing literature on consistency management in general is extensive [3],
so necessarily, the included works cover only a small portion of it. Notably,
Feldmann et al. categorize existing approaches as proof theory-based, rule-
based, or synchronization-based [22]. Our approach can be categorized as
synchronization-based, where the language consistency mappings define how
model elements should be compared between languages, albeit not by a direct
comparison but through an intermediary tree structure. Moreover, a plethora of
approaches exists for consistency checking between UML models [23]. Even
though there are numerous approaches presented, we are not aware of any
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approach satisfying the requirements with respect to lightweightness as listed in
Section 8.2.

8.7 Conclusions and future work

In this work, we argued for inter-model consistency checks that are lightweight,
i.e. easy to use and non-intrusive as they identify inconsistencies but do not
strictly enforce consistency. The creation and maintenance of consistency
checks is simplified by separating their definition in a globally reusable part,
the language consistency mapping, and a simple specific definition, the model
consistency mapping. The model consistency mapping can be used to notify
the user throughout the (possibly parallel) evolution of involved models. We
provided a proof of concept implementation and showed how the approach works
on a simple example of inter-model consistency between models conforming to
different languages.

While our approach is applicable to MBD in general, we showed its feasi-
bility in agile MBD settings, by leveraging CI and related tools to implement
consistency checks. Through our proof-of-concept, we showed the ease by
which a user can define checks at different granularity levels and between het-
erogeneous models. Moreover, we showed the usefulness of lightweight checks
for inter-model consistency in a CI pipeline, as well as possible interactions
between a CI server, modelling tools and version control systems. In agile MBD
settings, this approach allows simple explicit checking of consistency between a
large number of model elements, thereby highlighting at a glance, and soon after
their introduction, structural inconsistencies that may be costly to fix if detected
at a later stage.

In our future work we plan to build upon the approach presented in this
paper to enable the detection of additional and more complex inter-model
inconsistencies, while maintaining its lightweight nature. Moreover, we will
provide features to further simplify the manual definition of model consistency
mappings, e.g. by having the tool to automatically suggest likely candidates.
An evaluation of our approach in terms of an industrial case-study or controlled
experiment will follow once the implementation will be more mature (and
including the future enhancements listed in this paper).
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Abstract

Co-evolution of metamodels and conforming models is a known challenge in
model-driven engineering. A variation of co-evolution occurs in model-based
software product line engineering, where it is needed to efficiently co-evolve
various products together with the single common platform from which they are
derived. In this paper, we aim to alleviate manual efforts during this co-evolution
process in an industrial setting where Simulink models are partially reused across
various products. We propose and implement an approach providing support for
the co-evolution of reusable model fragments. A demonstration on a realistic
example model shows that our approach yields a correct co-evolution result
and is feasible in practice, although practical application challenges remain.
Furthermore, we discuss insights from applying the approach within the studied
industrial setting.
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9.1 Introduction

When Darwin proposed his theory of evolution by natural selection, he famously
concluded that “from (so) simple a beginnings endless forms most beautiful and
most wonderful have been, and are being evolved [1].” In software engineering
today, gradual and parallel changes are applied to software models with the goal
of spawning variants addressing diverse requirements. The individual evolution
and collective co-evolution of these variants need to be managed to ensure
continued opportunities for reuse. To this end, software product line engineering
(SPLE) proposes to organize development artifacts and their variants in product
lines [2]. In this work, we study an industrial setting with a model-based
product line where Simulink models are used to design and implement software
components for the development of complex embedded systems.

Simulink is one of the most-used tools for model-based development of
embedded systems [3]. It is a MATLAB-based graphical modeling environment
with extensive support for simulations and code generation. Simulink models are
created by defining a data flow by linking predefined and custom blocks. These
blocks can represent defined functions such as logical operators or arithmetic
operations, but also more complex functions such as integrators or look-up
tables. A special type of block, called subsystem, can, in turn, contain a set of
connected blocks, thereby providing the possibility of hierarchically organizing
models.

In the studied industrial development setting, reuse of (parts of) models for
software components is promoted to reduce the lead time for their development
and maintenance. A known best practice for managing variants in a product
line is through feature models, which shows the different variants present in
the product line and the points at which the product can vary. Nevertheless, a
commonly observed approach in industrial settings is to skip the creation of
a feature model and instead start by copying assets from an existing project
to reuse them in another project, leading to so-called clone-and-own product
lines [4]. This kind of reuse is commonly used in industry because it requires
no initial investment and it is simple to start with. Its downside is the lack
of systematic reuse, which is required to fully benefit from the advantages of
product lines [5].



124 Paper D

In the SPLE paradigm, common functionality is contained in a platform from
which various related products can subsequently be derived. Different products
can thus be branched off from the platform and further developed to fulfill their
unique requirements. This setup allows for customization of individual products
while benefiting from organized reuse of common functionalities, which can
centrally evolve. Indeed, a platform is expected to be periodically revised, for
example, to fix bugs, or to include software for new or changed requirements.
Such an evolution in the platform may need to be propagated to the derived
products to keep them consistent with the platform. In other words, the derived
products may need to co-evolve.

In typical model-driven engineering (MDE) scenarios, co-evolution refers
to the need to update models upon a change to the metamodels they conform
to. Automation of co-evolution of metamodels and models may utilize these
conformance relationships [6]. This is one of three relationships typically
considered in co-evolution. The other two are (1) a relation between a model
transformation and a metamodel, and (2) an indirect dependence of a model
on a metamodel [7]. In this paper we consider the need for derived products
to co-evolve, upon an evolution of the platform, to maintain the integrity of
the product line. In the studied setting, derived products and platform are all
Simulink models.

The setting differs from metamodel-model co-evolution due to the following
three reasons:

1. the relation between the models is not well-defined (at some point in the
past, the derived product was branched off from the platform and after that
has possibly undergone separate revisions, as illustrated in Figure 9.1);

2. there is no traceability of reuse, so it is not known which portions of which
artifacts should co-evolve; and

3. derived products are not necessarily co-evolved, the changes in the plat-
form might not be adopted depending on the requirements for that specific
derived product.

In the studied industrial setting, analyses to find re-used model portions and
assessment of the impact of propagating changes between them are currently
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performed manually. It is a time-intensive, difficult, and error-prone task. The
choice on whether to propagate co-evolution changes to a product is based on
the nature of the change, how the product differs from the platform, and on
the specific requirements of the product. Some of the engineers working on
the Simulink models are in charge of making this decision, we refer to them
as domain experts. We aim to provide automated support for domain experts,
at the granularity of reused model fragments, i.e. a group of connected model
elements. This paper contributes an approach and insights from its application
on real models. Furthermore, some of the proposed techniques may contribute
to moving from clone-and-own approaches to product lines

The remainder of this paper studies the evolution of the platform and how to
co-evolve the derived products. Section 9.2 describes the context of the work in
terms of the studied industrial setting and describes the studied problem. Our
proposed approach is outlined in Section 9.3, its implementation and a feasibility
study in the form of its application on a realistic example are presented in
Section 9.4. Insights from this process as well as the application of the approach
in an industrial setting are discussed in Section 9.5. Related research works are
listed in Section 9.6 and the paper is concluded in Section 9.7.

9.2 Motivation

9.2.1 A clone-and-own Software Product Line

The studied setting is a development team at our industrial partner, responsible
for the design, implementation, and testing of control software for a set of em-
bedded systems. To enhance the opportunities for reuse of software components
and their test cases, the team has adopted SPLE. Their product line is organized
as one platform, which contains common functionality for products, and several
derived products that are branched off from the platform throughout the revision
history and then further developed, as illustrated in Figure 9.1. When a new
requirement comes in, domain experts decide whether it is cross-product, and
therefore to be implemented in the platform, or if it is specific to one of the
products, and therefore to be implemented in that specific product only. New
revisions of the platform are released periodically. Upon such a release, the
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new or changed functionality in the platform may need to be propagated to the
derived products.

Revision

Development

Change
propagation

Pl
at
fo
rm

Derived product A

Derived product B

Derived product C

Figure 9.1. Organization of product line in a platform and derived products (A, B, C).
Upon a new release of the platform, changes made in the platform since the last

revision may need to be propagated derived products.

Currently, design and implementation of control software are done by the
same team, using model-based development. The developed products are com-
prised of software components that are implemented in Simulink models. Each
of these models is associated with a test harness and test cases. The eventually
deployed C code is automatically generated from these models using Embedded
Coder. Real-time behavior of the generated code is studied in hardware-in-the-
loop tests, which are later followed by tests on lab hardware, and eventually
on the real deployment target. In this use case, we specifically focus on the
development of software components and their test cases.

It is worth noting that not all typical SPLE practices have been adopted
in the studied setting, for example, there is no feature model, nor does the
development make use of overloaded (150%) models. Overloaded models are
models that contain a combination of all possible alternatives and from which
a particular variant can be obtained by stripping away the irrelevant elements.
Instead, the studied setting can be characterized as a clone-and-own product
line, in which the platform contains re-usable components that are copied to
the derived products. Typically, a component in a derived product is a reduced
version of that component from the platform, or it is cloned, i.e., a one-to-one
copy. However, in addition to the reduced and cloned components, derived
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Figure 9.2. Encountered cases of relationships between software components in the
derived products and their counterparts in the platform.

products can also contain “new” components that do not exist in the platform
and are only relevant for that specific project. Furthermore, derived products
may contain modifications of platform functionality. Hence, in the studied
setting, the platform is something almost, but not quite, entirely unlike a 150%
model.

Figure 9.2 shows the four different relationships encountered between soft-
ware components in the platform and the derived products. In this work, we are
particularly interested in case 2, in which components are copied from the plat-
form and then edited for specific use in a derived product. This case is primarily
interesting from the co-evolution perspective since common and product-specific
functionalities can both be present in software components. Changes to com-
ponents in the platform might need to be propagated to the derived products.
But it is no longer clear how those changes should be propagated because the
common portions between platform and products are no longer identical nor are
components in the products trimmed-down versions of those in the platform. As
mentioned earlier, the absence of a well-defined relationship between the models
complicates the co-evolution process, since it cannot rely on e.g. a conformance
relation as in the co-evolution of metamodels and models.

9.2.2 Making Software Changes

The systems under development are safety-critical, which means that all de-
veloped products require certification according to domain-specific industry
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Figure 9.3. Schematic overview of the relation between platform evolution and product
co-evolution.

safety standards as well as local and national regulations. Safety assessments
are time-intensive and costly. Consequently, a large development effort lies in
testing and certifying the software components. One of the improvements to
this process was the introduction of a software product line because certification
of products can then be based on existing certifications of the platform. Within
the current development setting, upon an update to a software component in the
platform, a review is needed for each of the products using that component, to
assess if they can and should be updated as well.

A schematic co-evolution scenario is illustrated in Figure 9.3. Let N denote
a model of a platform component and N1 a cloned and subsequently modified
copy of N in a derived product. Now consider an evolution of the platform
where N changes. The evolved model is denoted as N∗. Since N1 is based on N
and probably contains cloned parts of N that are now updated, we may need to
co-evolve the model of the product component too, thereby creating N∗

1.
Assessing the impact of a change in the platform on the products requires

knowledge of how products are updated after that change. First, it is checked
which products use the updated platform component. Then, for each of those
products, an expert assesses the need for updating it (bug fixes are more likely to
be propagated to the products than new functionality). Currently, this assessment
process is completely manual, but given the scale and growth of the product line,
this has become overwhelming, tending to infeasible. The platform contains
about 180 software components, each of which is implemented as Simulink
models and is associated with its own test harnesses and test cases. The mean
number of top-level blocks in such a model is 40, with a standard deviation of
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24. In the near future, the team will be working on six products derived from
the platform. Given that an experienced engineer can check approximately one
component every ten minutes, a new release of the platform causes a workload
of one month for these reviews only. Secondly, upon a decision to propagate the
changes to the product, the engineer manually updates the software components
in the product. After the changes are incorporated, the product needs to be
retested. Since changes might include new functionality, retesting may also
require the development of new test cases or modifications to existing ones. In
some cases, the updated test cases can be taken directly from the platform, but
this cannot be guaranteed in a general case, due to the informal relationship
between platform and product described earlier. Although the changes are
performed manually, most effort lies in fact in reviewing the tests to make sure
that they are still relevant and complete after a change to the software component
and, in case they are not, to update them.

The overall goal of our research is to provide means by which the review
process can be reduced and the number of tests needed when a component is
updated can be limited. In our work, we focus on the first part of the review
process, deciding whether platform changes should be propagated to products
or not. The context of our work is thus the assessment of the impact of changes
in the platform on software components and test cases in the derived products.

9.2.3 Co-evolution in the Product Line

One way of considering the co-evolution problem is by seeing it as a three-way-
merge. In three-way merging, three revisions of an artifact are merged into one.
This is commonly used to version development artifacts that are collaboratively
developed, in cases where local changes must be merged into an artifact that
has in the meanwhile also been changed by someone else. One of the three
revisions is considered the “base” artifact, from which the others are derived.
These are usually named “theirs”, for the remote revision, and “mine” for the
local revision. In our case, we could consider the original platform (N) as the
“base” model, the evolved platform (N∗) as “theirs”, and the product before
co-evolution (N1) as “mine”. A three-way merge is then expected to yield the
co-evolved product as the “target” (N∗

1).
Three-way merging is a conceptually valid approach of ending up with
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Figure 9.4. Example of a three-way-merge of Simulink models with a semantically
incorrect result without raising merge conflicts. The arrangement of the four models

corresponds to Figure 9.3.

the co-evolved product [8]. Note however that this merge implies that the
target contains all changes as made in the platform. In our scenario, we do not
necessarily want to achieve that. Rather, the engineers should be in control of
the co-evolution and choose which changes should or should not be propagated
to the products. Furthermore, although Simulink contains native support for
three-way merging, we found that in some cases using this support results in
semantically incorrect or irrelevant target models. An example of this issue
is shown in Figure 9.4, where a base model was altered into two semantically
identical, but syntactically different, ways. The resulting three-way merge is
nonsensical since the input of each of the two AND gates depends on the output
of the other. Typically the expected output from this type of input would be a
merge conflict, which then requires manual resolution, in this example however,
the merge is performed without complaints.

Given that we do not always want to propagate all changes, and, in case of
a merge, a manual resolution of merge conflicts may be required anyway, we
might consider a different approach. We hypothesize that instead of merging
models at the level of individual boxes and lines, the level of abstraction can be
raised to that of portions of functionality contained in fragments of models, akin
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to the idea of feature-based product line evolution [9], but without the creation of
a feature model. Within this scheme, an expert can choose to propagate changes
to a model fragment encompassing a certain functionality, when this fragment is
reused in different products. Assuming this support on the level of portions of
functionality, it would be easier to create the co-evolved product, automatically
assess the impact of the change, and thus aid in the assessment of the need for
propagating it to multiple derived products.

In conclusion, we study the co-evolution of a platform and the products
derived from the platform. Our primary focus lies in assisting engineers in
assessing change propagation at the level of model fragments rather than low-
level blocks, leading to the simplified creation of the evolved derived product
(N∗

1).

9.3 Approach

The approach outlined in this section aids domain experts in co-evolving derived
products upon evolution in the platform, by accepting or rejecting changes at
the level of model fragments. Our approach is based on the observation that the
product line is created by a “clone-and-own” approach, i.e., products are derived
by copying the platform and then customizing them. Most software components
in the products are expected to be a trimmed-down version of the corresponding
software components in the platform, although the customization can also
entail additions or modifications. Hence, the product software components are
typically expected to contain reduced parts of functionality as compared to the
platform.

We consider the schematic example models in Figure 9.5. The models on the
top row (Figures 9.5a and 9.5b) represent the platform before and after evolution.
The models in the first column of the two bottom rows (Figures 9.5c and 9.5e)
represent two derived products before co-evolution. Within these figures, the
shapes represent model elements. Hence, the example evolution from N to N∗

shows an addition, a deletion, and a modification of a model element.
The overall approach consists of the four steps listed in Table 9.1. The last

three steps represent a common software engineering pattern of packing, then
doing something on the packed thing, and then unpacking again. This section
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further details each step using schematic example models. Section 9.4 details
the implementation and feasibility study of our approach on a Simulink model
that provides a realistic1 representation of a typical model from the studied
development setting.

Table 9.1. High-level overview of the steps in our approach, elaborated throughout
Section 9.3 and exemplified throughout Section 9.4.

Step 1 Detect clones between platform and derived products.
Step 2 Replace clones with subsystem references.
Step 3 Evolve the referenced subsystem.
Step 4 For each reference, revert or expand the subsystem.

Step 1 The first step of the approach is to find common functionality shared
between product and platform. This step can be skipped when traceability
information tracking reuse already exists but is needed in our case since no
explicit knowledge of reused functionality is present in the artifacts. In our
setting, we expect the origin of common functionality between different files to
be through copying. Therefore, we start by looking for exact clones of model
portions between platform and products, although differences in layout are
acceptable as long as they do not change the semantics. The clones across the
three models before evolution are illustrated by dashed lines in Figure 9.5, for N,
N1, and N2 in Figures 9.5a, 9.5c, and 9.5e respectively. If desired, these results
can be stored for future instances of co-evolution, although it should be noted
that the derived products may evolve individually in the meantime and in that
process break the links that are created in this step.

Step 2 The second step comprises of “packing” each of the cloned model
fragments in separate subsystems. Crucially, these newly created subsystems are
stored in a common library. In each derived product containing the cloned model
fragment, that fragment is replaced by a reference to the created subsystem.

1Note that, for obvious reasons related to IP, we could not provide the “real” industrial model
in the paper.
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(a) N (b) N∗

(c) N1 (d) N∗
1

(e) N2 (f) N∗
2

Figure 9.5. Schematic example of models in a platform (N), its evolved version (N∗),
and two derived products before (N1 and N2) and after (N∗

1 and N∗
2) co-evolution.

Clones between the platform and derived products are indicated by the dashed and
dotted regions in the models before evolution (N, N1, and N2).

The results of this step on the products N1 and N2 are shown in Figures 9.6a
and 9.6d, respectively. Figures 9.6b and 9.6e show the subsystem as created in
the common library and referenced by N1 and N2, respectively.

Step 3 Now, in all derived products, the cloned fragments have been replaced
with a reference to the library subsystem containing that functionality. The
third step applies the evolution of the platform to that library subsystem and, by
these means, the change is automatically propagated to all derived products. To
perform this step, we need to know the following four things:

(a) What evolution happened in the platform;

(b) Which cloned fragments are affected;
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(a) N1 with cloned fragment
replaced by a subsystem

reference.

(b) Library subsystem as
referenced by N1, before

evolution.

(c) Library subsystem as
referenced by N1, after

evolution.

(d) N2 with cloned fragment
replaced by a subsystem

reference.

(e) Library subsystem as
referenced by N2, before

evolution.

(f) Library subsystem as
referenced by N2, after

evolution.

Figure 9.6. Cloned functionality is replaced with subsystem references (step 2). Then
changes are applied in those referenced subsystems (step 3).

(c) How we can evolve the library subsystems;

(d) For each subsystem reference, whether the change should be accepted or
discarded.

The first input we require is to know what evolution happened in the plat-
form between its closest previous release and the current release. This can be
obtained using standard model differencing provided by version control systems.
Although notoriously difficult for graphical models, Simulink provides effective
support for graphical model differencing. Note that the products, between their
derivation from the platform and the new platform release, may have evolved on
their own too. Therefore, when detecting clones, we consider the latest version
of the derived product, rather than the version at the time of branching off from
the platform.

Given an evolution of the platform, we need to determine which reused
fragments are affected. In the schematic diagrams, we simply draw boxes around
cloned fragments (as in Figure 9.5), providing clear clone borders. Naturally, this
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kind of meta-information is not present in the output of the clone detection step,
nor it can be expected to be part of other traceability mechanisms. Nevertheless,
it is important to assign borders to cloned fragments, since we want to limit the
applied changes in this step to within cloned fragments, thereby allowing the
engineers to adopt the changed fragment as a whole (as in Figure 9.6). Moreover,
limiting changes to within fragment borders prevents problems when later (in
step 4) “unpacking” the subsystem references again to their constituent blocks.
Therefore, we define clone borders by the components within it, i.e., after a
change, an added component shall be considered to be within the clone border
when it is only connected to components already in the clone. In case of multiple
new components, the same definition applies recursively. Modified components
are considered within the clone scope if and only if they were in the clone
scope before the evolution. Note that this step might result in cases where the
change cannot be applied completely since it happens across the boundaries of
the cloned fragment. We do not provide support for these specific cases, which
are expected to be very few, given the nature of the clones in the studied setting.

Once we know which cloned fragments have changed and how they have
changed, we want to apply the corresponding evolution to the library subsystems.
For each clone, we can perform the same evolution as it happened in the platform,
based on the obtained difference between the current and previous platform
releases. Conceptually, this is similar to applying a patch as obtained through a
Git diff. This is challenging in general for graphical models and not supported
in Simulink.

Figures 9.6c and 9.6f show the situation after the platform changes are
applied to the library subsystems. Note that in this example each subsystem
contains a single change and that one of the changes in the platform, that falls
outside the clone boundaries, is not propagated to any subsystem.

After this step, we can “unpack” the subsystems again and obtain the co-
evolved models. Before doing so, test cases and calculations of other model
metrics can be executed; this can help the engineer to decide if this change shall
be propagated to the product, or if it shall be discarded and thereby revert to
the original subsystem. This assessment, labeled as step 3d, requires domain
knowledge and is therefore always manual.
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Step 4 In step four, we break the references to the common subsystem, making
the subsystems, in each model instance, unique. Furthermore, we replace the
subsystems with their content, thus restoring the models to the same structure as
before the co-evolution (but with different contents). Instead of these unpacking
actions, we might consider keeping the now uncovered traceability links between
clones. We opt to unpack the subsystems back to their constituent blocks to
keep allowing the derived products to evolve independently of the platform too.
Figure 9.5 shows the evolved products N∗

1 (Figure 9.5d) and N∗
2 (Figure 9.5f).

Note that, as expected, changes outside the cloned fragments are not propagated
to the products.

9.4 Feasibility study

In the first part of this section, we describe the implementation2 of each of
the steps as outlined in Section 9.3. Individual steps are supported by fully
automated means, except for step 3, which requires an engineer’s decision.
The different steps are implemented as prototypes, we have not yet created
automation to combine the steps into a single executable script. Since the
models at our industrial partner cannot be shared, the second part of this section
describes the application of the implemented approach on a realistic (not real)
model. The third subsection describes experiences from applying the approach
to real industrial models.

9.4.1 Implementation

Step 1 In the studied setting, no traceability information indicating reuse of
model fragments exists. However, due to the “clone-and-own” nature of the
product line, we expected to find exact clones across models. To detect them, we
considered three alternatives for clone detection. The first is a built-in Simulink
feature that can detect similar subsystems within the same model. In our case,
we found that the models are quite “flat”, i.e., they typically do not contain

2All mentioned scripts and models are available in the following GitHub repository:
https://github.com/RobbertJongeling/Simulink-PL-co-evo
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subsystems. Furthermore, we aim to find clones across different models, not
within one single model.

After that, we considered the SIMONE Simulink code cloning tool [10].
SIMONE can be configured to look for similar subsystems or similar models. Its
strength is the ability to detect near-miss clones. In this use case, we expect exact
clones at block-level, which is why we eventually opted for the ConQAT [11]
tool. ConQAT is used in several research works that consider Simulink clones,
e.g., to detect anti-patterns [12], or to compare performances of cloning detection
tools [10]. It can find the exact clones of model fragments across models by
considering the Simulink models as graphs and matching identical sub-graphs.
The tool relies on the textual storage format of Simulink models, so it requires
input models to be saved as .mdl. For practical use, the main challenge is to
configure the correct minimum size of to-be-detected clones in order to detect
meaningful fragments. Through experimenting on our set of industrial models,
we found out that a minimum of 5 blocks yields reasonable results.

Step 2 Step 1 yields cloned model fragments across several models (the
platform and one or more derived products). In step 2, we want to con-
vert these fragments into references to a common library subsystem. To do
that, we first create a subsystem out of the cloned fragment. Executing the
command Simulink.BlockDiagram.createSubsystem(handles) creates a
subsystem from a list of handles of blocks making up a cloned fragment.
This list is the result of step 1. To be able to be converted to a subsys-
tem reference, Simulink requires a subsystem to be atomic.3 This can be
achieved by setting the parameter TreatAsAtomicUnit of a subsystem to on

. After that, the subsystem can be replaced by a reference by executing the
command Simulink.SubSystem.convertToModelReference('ModelName

/SubsystemName', 'libref', 'ReplaceSubsystem', true).
Note that after these actions, a single cloned fragment in one of the models is

replaced with a subsystem. However, in cases where a fragment is cloned across
multiple derived products, an extra step is required to put a subsystem reference
in each of them. First, a subsystem reference is created in each of the target

3The execution of blocks in the atomic subsystem can not be interleaved with the execution of
blocks outside it.
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models. In this scenario, we want to make all the subsystem references to point
to the same library subsystem. This is achieved by changing the ModelFile

parameter of subsystems to point to one library file containing the common
subsystem.

Step 3 After step 2, all clones are replaced by subsystem references pointing to
the same library subsystem. Consequently, any changes in that library subsystem
during step 3 are automatically propagated to all models containing a reference
to it. Now we need to apply the evolution that happened in the platform and
within the clone to the subsystem library.

First, we find out what the change implies. In Simulink, the difference
between two models can be obtained using either visdiff(N,N$^*$), which
creates a visual comparison and a report, or through slxmlcomp.compare(N,N

$^*$), which returns the difference in an xmlcomp.Edits object.

However, the latter is also mostly visual, since the object’s main purpose is
to allow the creation of a comparison report as created by the former command.
Nevertheless, the xmlcomp.Edits object provides the roots of tree representa-
tions of both models and allows a programmatic traversal of them. This makes
it possible to automatically look for all changed (parameter Edited set to true)
or new blocks. The object will contain only those nodes that have changed,
so all common ones that are unchanged are not mentioned. Using the same
traversing technique, we can determine which clones are affected by the par-
ticular evolution in the platform and which changes are made to them. This
is how the calculation of differences and their localization in code fragments
could be implemented in the Simulink environment. However, Simulink does
not provide features similar to Git, in which differences between files can be
stored into a patch that can later be applied to the original file to obtain the
changed one. Therefore, applying the changes is currently a manual process and
consequently, there is not any notable added value in automating the remaining
sub-steps. Upon the decision to accept the change, we continue with the final
step, alternatively, the changes are discarded and the model is returned to the
state before the changes made in step 2.
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Step 4 Step 4 should break the links to the referenced subsystem and unpack
the subsystems back to individual model components. We adopted a script from
the Mathworks forums to break the link to the library subsystem and make
the subsystem in the derived model unique [13]. After that, we converted sub-
systems back to their original components through Simulink.BlockDiagram.

expandSubsystem with the subsystem that should be unpacked as an argument.

9.4.2 Demonstration

We illustrate the implementation by applying it to a public Simulink example
model. In selecting the example, we considered models that are as realistic
as possible in the sense that they 1) consider pieces of control software that
could be used to generate code, 2) have a size and complexity comparable
to typical models encountered in the studied industrial setting, and 3) can
have derived products and can be subject to additions, changes, and deletions
of model elements. We consider as a model the airflow_calc subsystem
within the fuel_rate_control subsystem within the sldemo_fuelsys exam-
ple model [14]. We slightly modified that by changing the condition for enabling
the switch from (O2_normal ∧ fuel_mode = LOW) to ((O2_normal ∧ fuel_mode
= LOW) ∨ (O2_normal ∧ fuel_mode = HIGH)). The resulting base model (N)
is shown in Figure 9.7.

To show a reasonable example of evolution, we made sure to consider
different types of changes, both within and outside a cloned fragment. The
evolution of the model contains three changes compared to the base.

1. It fixes a bug by adding a negation in the switch condition, thus making
it ((O2_normal ∧ fuel_mode = LOW) ∨ (¬ O2_normal ∧ fuel_mode =
HIGH)).

2. It refactors two multiplication blocks with 2 inputs each to a single multi-
plication block with 3 inputs, in the “Feedforward Control” part.

3. It updates the constant value Oxygen Sensor Switching Threshold from
0.5 to 0.7.

The resulting evolved model (N*) is shown in Figure 9.8.
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Figure 9.7. Realistic Simulink model as adapted from one of the Simulink examples.
This model is considered the base platform model (N) in this Section.
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Figure 9.8. Evolved version of N from Figure 9.7, locations of changes indicated in
cyan. This model is the evolved platform (N∗) in this section.



142 Paper D

Intake	Airflow	Estimation	and	Closed-Loop	Correction

Feedforward	Control

Feedback	Control

2
fb_correction

1
est_airflow

.01-.01z	-1
1-.8z	-1

Throttle	Transient

2-D	T(u)
u1

u2

Ramp	Rate	Ki

2-D	T(u)
u1

u2

Pumping	Constant

Oxygen	Sensor
Switching	Threshold

sld_FuelModes.LOW

K	Ts	(z+1)
2(z-1)

3
fuel_mode

2
O2_normal

1
sensors

e0

<map>

<ego>

e1

<speed>

<throttle>

normal_operation

enable_integration

enable_integration

Figure 9.9. Model version derived from N from Figure 9.7. This model is the derived
product (N1) in this section. Highlighted in red are the blocks that form the fragment of

N1 that is cloned from N.

We consider one product derivation from the original platform model. The
derived product model is, as typical in our setting, cloned from the platform
model and then modified. Two changes were made after the cloning step:

1. Part of the switch condition functionality was stripped, leaving only the
original from the sldemo\_fuelsys example: (O2_normal ∧ fuel_mode
= LOW).

2. The integrator method used by the discrete integrator block has been
changed from Forward Euler to Trapezoidal.

The resulting derived model (N1) is shown in Figure 9.9.
Now we show the steps of our approach and how they could be applied to

this use case.

Step 1. We ran one of the ConQAT pre-defined configurations that detect
clones between Simulink models: simulink-analysis.cqr. As input, we used .mdl
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versions of the original model (N, Figure 9.7) and the variant (N1, Figure 9.9),
and we configured a minimum-clone-size of 5. In this example, a single large
cloned fragment is identified between N and N1, it is shown in red in Figure 9.9.
Note that the integration method is a property of the discrete integrator block and
since the clone tooling works on the level of blocks, the two integrator blocks
are marked as clones.

As input for step 2, we require a list of handles of all blocks in the cloned
fragment. ConQAT reports a list of block identifiers in the form of a Matlab
script (.m file) that can be run to obtain the colorization as shown in Figure 9.9. It
does this by setting, for each block in the model, the parameter BackgroundColor.
To obtain a list of handles, we modified this output file to, instead of setting
these parameters, getting the ’handle’ parameter for all blocks that are part of the
cloned fragment (which they are when their background color is set to anything
else than white). So we take the generated simulink-analysis_matlab-colorm-
file-writer_Clone_0.m file (and possibly the other files, if more clones were
found), and then we run the script to get the block handles out.

Step 2. Now we have all the handles of the blocks in the subsystem. At this
point we make a subsystem out of all the cloned blocks, we make it atomic and
finally we convert it into a reference:

1. Simulink.BlockDiagram.createSubsystem(handles);

2. set_param('intakeAirflow_var/Subsystem',

'TreatAsAtomicUnit', 'on');

3. Simulink.SubSystem.convertToModelReference(

'intakeAirflow_var/Subsystem', 'modelref_lib',

'ReplaceSubsystem', true)

After applying these steps, model N1 contains a reference to the library subsys-
tem as stored in modelref\_lib. The resulting model is shown in Figure 9.10

Step 3. The engineer shall now apply to the library subsystem the changes that
are limited to the clone scope, as defined in Section 9.3. Following our rules,
the new negation block is not part of the change to be applied, but the changed
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Figure 9.10. N1 being prepared for co-evolution, clone is replaced by subsystem
reference.

parameter and the multiplication refactoring are. The changes made in the library
are immediately visible also in the variant since it contains a reference to it. Now
that the changes appear in the variant, it is up to the domain expert to choose
whether to accept or discard the changes made by the co-evolution mechanism.
In this example, we assume that the changes are accepted, to continue with step
4.

Step 4. For breaking the link to the library subsystem, we run the aforemen-
tioned script: Replace_MdlRef_SubSys('intakeAirflow_var'). As a small
note on an implementation detail, this script copies the model and breaks the link
in the copy, but this is not essential to the functionality and not relevant for our
approach. Now that the link is broken, we can unpack the subsystem again to
its constituent blocks through Simulink.BlockDiagram.expandSubsystem(

'intakeAirflow_var_new'). We obtain the model as shown in Figure 9.11,
which represents N∗

1, the co-evolved derived product.



9.4 Feasibility study 145

Subsystem_SS_1

Intake	Airflow	Estimation	and	Closed-Loop	Correction

Feedforward	Control

Feedback	Control

2
fb_correction

1
est_airflow

sld_FuelModes.LOW

3
fuel_mode

2
O2_normal

1
sensors

.01-.01z	-1
1-.8z	-1

Throttle	Transient

2-D	T(u)
u1

u2

Ramp	Rate	Ki

2-D	T(u)
u1

u2

Pumping	Constant

Oxygen	Sensor
Switching	Threshold

K	Ts	(z+1)
2(z-1)

e1

<throttle>

<speed>

e0

<ego>

<map>

normal_operation

enable_integration

enable_integration
enable_integration

Figure 9.11. The result of the co-evolution approach: N∗
1. Note that the background is

there just to clarify the image. It can be removed by setting the additional option
’CreateArea’ to ’Off’ (available from 2019a)
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9.4.3 Experiences

We now describe the outcomes of applying our approach to real industrial
models. We discuss in particular two co-evolution cases of software components
(referred to as case A and case B) that are particularly interesting because they
represent extreme cases in the described setting. The derived products are large
reductions of the platform (From 80 to 20 in case A and from 74 to 15 top-level
blocks in case B) and contain some changes.

Step 1 In case A, two clones were found, one consisting of eight blocks and
another consisting of seven blocks. The platform contains two occurrences of a
pattern of a few blocks; one occurrence is included in the clone. It is not clear
why one is chosen over the other. Case B contains only a single clone, by the
size of ten blocks.

In general, detecting clones using ConQAT worked fairly well for our use
case, because we expect identical clones between platform and components.
Nevertheless, it is still challenging to properly configure the tool (e.g., the
minimum size of clones) to obtain desired results. Another potential hiccup is
the requirement of the clone detection tool to provide input models in the textual
.mdl format, which is not supported for all models, for example, those including
internal test harnesses. We did not encounter this problem in our setting since
all test harnesses had previously been exported.

An underlying assumption of our approach is that the software component
models can be divided into meaningful fragments, representing small chunks of
functionality, such as input handling, or a particular calculation. When applying
the approach on a set of industrial models, we found that this assumption does
not always hold. In particular, smaller models proved less suitable for our
approach since the cloned fragments were either too small to be meaningful or
not existing at all. Furthermore, for small models, a manual approach could be a
better choice time-wise.

Step 2 In case A, since there are two clones, the step to create a subsystem
from a cloned fragment has to be executed twice. This works fine, but one thing
that could form a barrier for practical use is that the intermediate result can look
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messy since the creation of subsystems will cause other lines to rearrange and
possibly get entangled.

Step 3 A considerable amount of changes in the revision history are non-
functional. They are limited to e.g. updates to parameter names or comments.
In case A, the change in the platform is a correction to the model for which
an extra multiplication with a constant factor is added to a flow. In case B,
also functionality is added to the model, but in contrast to case A, it is partially
outside of the cloned fragment and is therefore not propagated by the approach,
as described in Section 9.3.

Step 4 In case A, the unpacking functions correctly. It should be mentioned
that for practical applications a hinder may be that the layout of the model after
applying these steps may differ significantly from the layout before the steps.
This holds even if the co-evolution is limited to the updates of parameter values.

Moreover, we have encountered a type of case in which our approach does
not help the engineers much. One example concerns a refactoring impacting the
entire model, rather than being localized to a specific model fragment. Examples
of such refactoring efforts include: starting to monitor values on all output ports
for testing purposes, externalizing a model’s test harness, or upgrading the model
to work with a new Simulink version. In these cases, our proposed approach
would likely miss some occurrences, since they would occur outside cloned
fragments.

9.5 Discussion

We have shown our implementation of automatic support for co-evolution be-
tween models in an industrial setting of a software product line. The imple-
mentation can be integrated into the development process since it builds on the
same Matlab platform as the Simulink models. Nevertheless, some points in
our approach require further research, as identified throughout Section 9.4. For
example, a possible scenario is that a single evolution affects several cloned
fragments. In that case, propagating a few of them may not yield a meaningful
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model, for instance, because an extra value was introduced in one cloned frag-
ment but not used in any other. This is somewhat related to the issue of changes
across clone borders that cannot be propagated. In the end, there may remain
cases for which the approach does not provide the desired result. However, thus
far, these concerns have not impacted the application of the approach, because
they did not occur in the studied industrial models. Overall, it is clear that the
solution is not the holy grail and that several problems remain open.

In Section 9.4, we showed that the approach still requires human intervention
for a few decision-making actions. Ideally, all steps not strictly requiring an
engineer’s decision would be automated, but the following implementation
challenges have prevented us from doing that so far. To automate the application
of changes in the library subsystem, it is required to be able to refer to the
same block across different models. Handles are not carried over between
models so it is required to rely on identifiers. However, most blocks within the
models have no explicit name, but they rather get automatically assigned names
(e.g. LogicalOperator4). This numbering system may completely change in
the case of a derived product in which some modifications were made, hence
identifiers are also not reliable to identify blocks across models. Even if this
would be solved, there is still one action left to be done manually, which cannot
be automated. More specifically, the engineer must decide whether to accept
or discard the proposed co-evolution. By using our approach, the engineer
gets access to more information to base that decision on, since the proposed
co-evolution model can be tested and other model metrics derived from it.

When using the approach, an unexpected benefit was to get support for
localizing reused fragments. There was no traceability for this in place except
for an inconsistently followed naming convention at the level of model files
that indicates if they are derived and modified after being branched off from the
platform. Although requirements traceability is in place in the industrial setting,
it specifically links requirements to Simulink models and test harnesses. The
application of the clone detection tooling allowed instead for identification of
reuse at sub-model level. In the studied setting, we encountered flat models, in
contrast to the common practice in Simulink of creating hierarchies of nested
subsystems. The approach is not dependent on the absence of subsystems,
but the practical implementation is guided by it. Indeed, the typical absence
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of hierarchy in the studied setting and the expectation of finding exact model
fragment clones have guided our choice of clone detection tool.

The studied problem exists in part because of the clone-and-own practice
and the accompanying lack of traceability between re-used model fragments. As
a way forward towards a product line, we mention two main directions. In the
first, Step 4 of the approach could be omitted, which would allow the practice to
migrate to a more systematic product line. In such a case, the identified clones
might be lifted to a variant description model in pure::variants [15], which could
then be used to generate different model variants. The second direction would
be to have more support for product lining in the modelling language, such that
clone-and-own may be avoided. Variability in Simulink can be managed through
feature modelling, negative variability, or delta modelling [16]. In our setting,
we would want to manage variability outside single models, given the strict
regulations on their certification. Therefore, feature modelling and managing
variability using pure::variants could be a good alternative in the studied setting,
despite the required changes throughout the engineering process to fully benefit
from this way of organizing reuse.

It is clear that the proposed approach is heavily guided by the used modelling
tooling and practices in the studied setting. Nevertheless, we can imagine
generalization to other modelling languages. At a very high level, the approach
is not uniquely applicable to Simulink only, we can imagine finding clones
between models and then replacing them with references in other languages too.
However, this depends also on the storage format of models. For modelling tools
with repository-based instead of file-based storage, variability may be addressed
in a completely different way, making our approach less applicable. We finalize
this discussion by reiterating that, in this work, we address an existing clone-
and-own practice and aim to provide means to improve it, despite knowing that
it is not the ideal product line practice.

9.6 Related work

Within MDE, co-evolution commonly refers to model-metamodel co-evolution [6].
In contrast, co-evolution in software product line engineering commonly refers
to the parallel evolution of a feature model and software model. For example, re-
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cent work on co-evolution in model-based product lines enables the co-evolution
of a feature model and model variants, through an approach combining the man-
agement of revisions of models through time and across variants [17]. In this
work, we have considered a third option, the co-evolution of software models
belonging to a platform and derived products in a model-based software product
line. A key difference between existing co-evolution work and our work is
that we cannot rely on the formal conformance relation between artifacts, as is
typically done in operator or inference approaches to co-evolution in MDE [18].
Instead, in our case, the derived products are merely inspired by the platform,
but there are no more guarantees about the relation between them.

We study the co-evolution of Simulink models between which fragments
have been reused through exact copies. Alternatively, Rumpe et al. propose
to assess reuse opportunities of Simulink model fragments by checking that
the behaviors of different fragments are the same [19]. In their work, they
also consider a software product line setting. They note, similar to us, that
behaviorally identical fragments across models may be replaced with references
to a single library fragment. Due to the expectation of encountering exact
syntactic clones in the studied setting, we do not further study the identical
behaviors of different models. Other work also considers co-evolution of model
fragments [9], but in contrast to our work, they construct a feature model and
consider the automatic creation of variants from it. In our case, the variants have
already been created and must be co-evolved with the platform from which they
are derived. A similar study checks the integrity of the co-evolution by utilizing
notations from evolutionary biology that keep track of the variations between
the platform and derived products [20]. Other work considers co-evolution
of models and libraries [21]. Although that work seems closer to our studied
setting, still it relies on a formal conformance relationship between the models
and the libraries.

There have been other works considering variability in Simulink models.
Dajsuren has proposed to manage clones and their variants outside of models,
through configuring clones using a textual language [22, Chapter 7]. The
approach allows for reuse of subsystems across different models while keeping
the clone management separate from the main model, thus preventing overloaded
models from growing too large and becoming unreadable. Another proposal
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to prevent overly overloaded models is to define model variants using the set
of operations that are required to obtain the variant from the base model, so-
called delta-modeling [23]. In this work, we have a different starting point,
since we already encounter an existing clone-and-own product line. Neither
of the aforementioned approaches specifically considers co-evolution of the
cloned fragments. Other work has specifically explored three-way-merging as
a solution to co-evolution in software product lines [8]. As we have argued,
there is an inevitable need for human intervention in those cases and as we then
hypothesize, resolving conflicts would be easier when the engineer can reason
about them at the level of functionalities rather than individual blocks.

There has also been some work towards impact analysis [24] and test evo-
lution [25] for Simulink models in an industrial setting. Since the proposed
approaches and implementations in those works are tightly integrated with the
industrial setting in which they are developed, their results are not so easily
generalized. The impact analysis work assesses the impact of changes in a
model on their tests by forward and backward traversal of the flow in the model,
until reaching input and output ports. All tests involving those inputs or outputs
are then said to be impacted. The test evolution work builds further on that test
identification work to generate test harnesses in case the evolution requires the
creation of a new one. Hence, the work limits consideration of co-evolution to
tests. This is one of the aspects we aim to consider in our future work, whereas
in this paper we have focused on co-evolution of software models.

Related work on clone management [26] emphasizes its need but focuses
on code-based software representations. Within code clone analysis, evolution
of code clones is often studied with the aim of visualizing it [27]. Moreover,
those studies have reported disagreeing findings from empirical studies [28]. In
addition to these code-based clone evolution studies, other works have consid-
ered graph-based (Simulink) models as well. ModelCD is a clone detection tool
based on ConQAT that can detect exact and near-miss clones across Simulink
models [29]. The evolution of cloned Simulink fragments has been studied
before too [30]. In that work, the authors focus on identifying clones across
revisions of Simulink models to study their evolution.
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9.7 Conclusion

We have presented our approach for the co-evolution of Simulink models in
a model-based product line. Co-evolution is considered at the level of model
fragments that are cloned across a platform and derived products. In this work,
we aimed to provide support for the process of assessing whether or not a change
should be propagated. The feasibility of our approach is shown on a realistic
example model. We showed that our approach yields correct results and that
automated support aids in the decision-making process.

To improve the practical applicability of this work, we plan to extend our
approach to include “what-if” analysis on the generated co-evolved products.
This kind of analysis aids engineers in assessing whether to accept or discard
a change and ascertaining how associated test cases should be updated given a
change to a model. We will then build upon that for another planned future work,
where we plan to provide more support for semi-automatically co-evolving the
test cases as well. This will contribute to one of our main goals, i.e. reducing
the effort of review and test upon platform evolution. Another interesting future
direction is to consider alternatives for the code clone detection step. For that,
we are looking into combining our work with other research efforts carried out
at our partner company which focus on the automatic identification of potential
model fragment reuse based on requirements similarity.
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