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Sammanfattning

Forskning om autonoma agenter och fordon har tagit fart under de senaste
åren, vilket återspeglas i den omfattande mängden litteratur, och investeringar
som gjorts av de stora aktörer i branschen, i utvecklingen av produkter såsom
självkörande bilar. Dessutom förutses det att dessa system kommer att kon-
tinuerligt kommunicera och samarbeta med varandra för att anpassa sig till
dynamiska omständigheter och oförutsebara händelser, och som ett resultat av
detta kommer de att uppfylla sina mål ännu mer effektivt. Underlättandet av
ett sådant dynamiskt samarbete och modellering av interaktioner mellan olika
aktörer (programvaruagenter, människor) är fortfarande en öppen utmaning.

Denna avhandling tar upp problemet med att möjliggöra för ett dynamiskt
samarbete genom att undersöka automatiserad justering av autonomin hos olika
agenter, kallad Adaptive Autonomy (AA). En agent är i detta sammanhang en
mjukvara som kan bearbeta och reagera på sensordata i den miljö där den är
belägen och har dessutom möjlighet att utföra åtgärder autonomt. I detta arbete
påverkas agenternas AA av deras villighet att interagera med andra agenter,
som fångar agentens egenskaper i att ge och be om hjälp, baserat på olika
faktorer som representerar agentens tillstånd och dess intressen. AA-metoden
för samarbete används i två olika domäner: (i) att hitta och följa rörliga objekt
samt (ii) täckningsproblemet för mobila trådlösa sensornätverk. I båda fallen
jämförs den föreslagna metoden med state of the art metoder. Dessutom bidrar
avhandlingen på en konceptuell nivå genom att kombinera och integrera AA-
strategin - som är rent distribuerad - med en högnivå-uppdragsplanerare för
att utnyttja förmågan att hantera lokala och kontingenta problem genom AA-
strategin, samtidigt som man minimerar förfrågningarna om en omplanering
till uppdragsplaneraren.
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Abstract

Research on autonomous agents and vehicles has gained momentum in the
past years, which is reflected in the extensive body of literature and the in-
vestment of big players of the industry in the development of products such as
self-driving cars. Additionally, these systems are envisioned to continuously
communicate and cooperate with one another in order to adapt to dynamic cir-
cumstances and unforeseeable events, and as a result will they fulfil their goals
even more efficiently. The facilitation of such dynamic collaboration and the
modelling of interactions between different actors (software agents, humans)
remains an open challenge.

This thesis tackles the problem of enabling dynamic collaboration by in-
vestigating the automated adjustment of autonomy of different agents, called
Adaptive Autonomy (AA). An agent, in this context, is a software able to pro-
cess and react to sensory inputs in the environment in which it is situated in,
and is additionally capable of autonomous actions. In this work, the collabora-
tive adaptive autonomous behaviour of agents is shaped by their willingness to
interact with other agents, that captures the disposition of an agent to give and
ask for help, based on different factors that represent the agent’s state and its
interests. The AA approach to collaboration is used in two different domains:
(i) the hunting mobile search problem, and (ii) the coverage problem of mobile
wireless sensor networks. In both cases, the proposed approach is compared to
state-of-art methods. Furthermore, the thesis contributes on a conceptual level
by combining and integrating the AA approach – which is purely distributed –
with a high-level mission planner, in order to exploit the ability of dealing with
local and contingent problems through the AA approach, while minimising the
requests for a re-plan to the mission planner.
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Abstrakt

Numri i kërkimeve shkencore mbi agjentët dhe automjetet autonome ka pësuar
rritje vitet e fundit, fakt i pasqyruar në një literaturë të gjerë shkencore dhe
në përfshirjen e lojtarëve të mëdhenj të industrisë në zhvillimin e produkteve
të tilla si makinat vetë-drejtuese. Për më tepër, parashikohet që këto sisteme
të komunikojnë dhe bashkëpunojnë vazhdimisht me njëri-tjetrin në mënyrë që
tu përshtaten rrethanave të ndryshueshme dhe ngjarjeve të paparashikueshme
gjatë ekzekutimit të tyre, në mënyrë që të përmbushin qëllimet e tyre me efika-
sitet. Realizimi i një bashkëpunimi të tillë dinamik dhe modelimi i ndërveprim-
eve ndërmjet akotrëve të ndryshëm (agjentë softueri, njerëz) mbetet një sfidë e
hapur në fushën e sistemeve autonome.

Kjo tezë trajton problemin e realizimit të një bashkëpunimi dinamik mes
agjentëve, përmes investigimit së autonomisë adaptive që munds̈on rregullimin
e automatizuar të autonomisë së agjentëve. Një agjent, në këtë kontekst, është
një softuer i aftë të proçesojë dhe të reagojë ndaj inputeve që vijnë nga mjedisi,
dhe është gjithashtu i aftë për veprime autonome. Sjellja autonome adaptive e
agjentëve karakterizohet nga gatishmëria e tyre për të ndërvepruar me agjentë
të tjerë, në formën e kërkesës ose dhënies së ndihmës, si rrjedhojë e ndikimit
të faktorëve të ndryshëm që përfaqësojnë gjendjen dhe interesat e agjentëve.
Metoda e propozuar për realizimin e autonomisë adaptive është përdorur në:
(i) problemin e mbulimit së shënjestrave me κ-agjentë, dhe (ii) problemin e
mbulimit në rrjetat me sensorë të lëvizshëm. Në të dy rastet, qasja e propozuar
është krahasuar me metoda të njohura në secilën fushë. Për më tepër, teza
kontribuon në një nivel konceptual duke kombinuar dhe integruar qasjen me
autonominë adaptive – me karakter të shpërndarë – me një planifikues të cen-
tralizuar të nivelit të lartë, në mënyrë që të shfrytëzohet autonomia adaptive për
zgjidhjen e problemeve në nivel vendor, me qëllim minimizimin e përfshirjes
së planifikuesit të centralizuar.
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Chapter 1

Introduction

Multi-agent systems (MASs) have been studied extensively in the past decades,
and have been used to solve a variety of problems, in both industry and acade-
mia, e.g. market simulation, monitoring, and system diagnosis, among oth-
ers [1, 2]. With respect to logistics, MASs have been used to solve problems
such as planning and control, task allocation, negotiation, etc. On the other
hand, telecommunication companies, have led the innovation in MAS tech-
nologies in their own sector, e.g. early work by Telecom Italia laid the foun-
dations for the creation of the JADE (JAVA Agent DEvelopment Framework)
agent platform [3], used afterwards for the development of a mediation layer
between their support systems and their network equipment and functionali-
ties [4].

Nevertheless, a MAS approach is not a universal solution, and is only suit-
able in specific scenarios [2]. First and foremost, MASs are appropriate for
those problems where different parties are involved, with potentially differ-
ent goals and interests, that should be aligned. Second, MASs are a useful
approach to tackle problems that can be divided into independent or parallel
tasks, potentially increasing the computational speed. Third, MASs can be
used to increase the robustness to failures of the overall system, and to provide
a more graceful degradation to the system. Fourth, a MAS is inherently modu-
lar and distributed, and therefore scalable compared to completely monolithic
solutions. Additionally, embodied agents, e.g. physical robots, that are able
to distribute geographically, create opportunities for use in domains such as
search and rescue, given that the robots coordinate properly.

An agent in a MAS is usually defined as a software able to process and

3



4 Chapter 1. Introduction

react to sensory inputs in its environment, while additionally being capable of
autonomous actions [5]. Interest in the development of autonomous systems
has increased in the past years, both from academia and industry [6–10]. As a
result, researchers have tackled several issues related to autonomous behaviour
including its definitions [11, 12], changing autonomy levels [6, 7], human-like
teamwork and collaboration [13–15], placing the human back in the loop and
specifying his/her role in the interplay among agents and robots, as well as
ethical concerns that have been gaining more and more attention at a rapid
pace [16–19]. On the other hand, big industry players such as Google and
Tesla, are shaping the state-of-practice with the realisation of self-driving cars.
In this context, five autonomy levels have been identified [20], spanning from
no automation to full self-driving automation, in which the driver is not ex-
pected to keep control of the vehicle.

These autonomous systems are envisioned to collaborate with one another
as a result of continuous adaptation to a dynamic environment and unforeseen
events, which can have a negative impact on their capability to fulfil given
goals and objectives. Modelling interactions between agents such that they are
able to collaborate with one another, and dynamically change their autonomy
levels, depending on the circumstances, remains an open challenge. Further-
more, these interactions and resulting collaborations impact the autonomy of
individual agents, e.g. when agents decide to depend on one another, or are
subject to external influences (e.g. receiving help requests), in the context of
specific goals and tasks.

This thesis studies adaptive autonomy (AA), a behaviour that allows agents
to collaborate by changing their autonomy levels depending on their circum-
stances in order to achieve their goals. In order to realise AA, a formalism is
proposed based on the willingness to interact, which underlies the collabora-
tive behaviour between agents. The willingness to interact covers both facets
of interaction between agents, i.e. asking for help and giving help. The util-
ity of the AA approach is investigated in two application domains: (i) mobile
wireless sensor networks (MWSN) for extending the longevity of the network,
and (ii) hunting mobile search, for monitoring multiple targets, with different
viewpoints. The thesis contributes further on a conceptual level by considering
how such agent framework could be integrated with centralised approaches,
e.g. high-level planning, in order to exploit advantages of both methods such
as quick response times, and calculation of optimal solutions, respectively.

The rest of the thesis is structured in two parts. The first part, namely the
Kappa, contains a comprehensive description of the research activities, goals,
and contributions. Whereas, the second part consists in the collection of the
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papers included in the thesis.
The chapters in the Kappa are organised as follows. The background is

given in Chapter 2, and contains a description of the key concepts relevant in
this work such as intelligent agents, MASs, autonomy, and it discusses how
this research relates to similar topics. Chapter 3, initially gives the formula-
tion of the problem, the research goal, and the research problems driving the
research presented in this dissertation. Afterwards, the five contributions of the
thesis are described in detail. The chapter concludes with the research process
and method adopted for conducting the research described in the thesis. An
overview of the papers included in the thesis is given in Chapter 4. Finally,
Chapter 5 lines out the main conclusions, while Chapter 6 identifies interesting
directions for future research.





Chapter 2

Background

Agents and autonomy are central to the research described in this thesis. There-
fore, in this chapter these concepts are briefly described, starting from the clas-
sical definitions of agents given in well-known Artificial Intelligence (AI) lit-
erature, building up to intelligent and autonomous agents, and multi-agent sys-
tems (MASs). Defining autonomy is not a straightforward matter. In fact there
is a plethora of definitions and theories that have been proposed over the past
decades, each contributing in a specific way. Here, an attempt has been made
to provide a comprehensive view on these different ideas. Finally, the chapter
concludes by identifying different research directions with respect to research
on autonomous agents, used to provide some context for the contributions pre-
sented in this thesis.

2.1 Intelligent Agents
An agent refers to a computer system equipped with sensors and actuators,
with which it is able to sense and act in the environment where it is situated,
while additionally being able of performing autonomous actions [21,22]. This
definition is easily extended to cover intelligent agents, provided that such au-
tonomous actions are flexible [21], and is considered as the weak notion of
agency [23].

The strong notion of agency considers agents from a rather human-like per-
spective, thus covering aspects such as mental states, beliefs, desires, intentions
and so on. Flexibility covers three aspects of agent behaviour: (i) social ability

7
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which refers to agents interacting with one another, (ii) reactivity to the stimuli
coming from the environment, and (iii) pro-activity in terms of deciding own
goals or courses of action. Wooldridge [24] further argues that a balance be-
tween pro-activity (goal-directedness) and reactivity is required by intelligent
agents, i.e. neither blindly executing procedures nor continuously reacting to
the environment – thus achieving no goals – are desired behaviours. Further-
more, social ability is more than the exchange of messages. In fact, it refers to
interactions of entities that are autonomous and have their own goals, which do
not necessarily have to overlap. Thus, these agents1, will have to negotiate and
cooperate in order to achieve their goals. Research on agents generally falls
in one of three lines of inquiry, identified by Wooldridge and Jennings [25],
such as agent theories, agent architectures, and agent languages. Agent the-
ories are concerned with how to conceptualise agents, and can make use of
formal models for describing agents and their properties. Agent architectures
build upon these agent theories and aim to build concrete agents with software
and/or hardware. Agent languages reside at a technical level and target the
software tools and languages which can be used to implement agents.

There are three well-known paradigms that target the design of agent ar-
chitectures: (i) symbolic or deliberative, (ii) reactive, and (iii) hybrid which
is simply a combination of both approaches [23]. The symbolic paradigm is
connected to classical AI approaches [25], and relies on the physical-symbol
hypothesis stated by Newell and Simon: “A physical symbol system has the
necessary and sufficient means for general intelligent action” [26]. The phys-
ical symbol system is composed of a set of symbols, as well as processes and
operations that could be applied to structures of these symbols2. Processes and
operations themselves can create, modify, reproduce and destroy the symbolic
structures. Agents built upon the symbolic paradigm reason on the symbolic
representations of their world in order to decide about what beliefs to have and
actions to take (e.g. theorem proving). Such reasoning revolves around the
beliefs that an agent has about the current state of affairs in its environment
and its desired state in the future. On the other hand, in order to achieve such

1Agents are sometimes confused with concept of objects in object-oriented methodologies [24].
However, there are several differences at a conceptual level. An agent is assumed to have some au-
tonomy that enables it to decide not to execute a method requested by another agent. Furthermore,
the other properties that relate to flexibility as discussed above are not at the core of the object
concept. Lastly, an agent generally corresponds to one thread of control.

2In most interpretations, the full implications of Newell and Simon’s ideas are not cap-
tured [27]. Besides running over patterns of symbols, processes can generate processes, as well
as patterns can generate patterns, and as a result a physical symbol system, in principle, is able to
develop.
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desired state, an agent has to engage in practical reasoning (means-ends rea-
soning or planning). In such architectures, the main problems to be solved
are: (i) the representation/reasoning problem, which refers to how knowledge
is represented as well as how agents reason with such knowledge, and if they
do so in time, and (ii) the transduction problem, that relates to the generation of
adequate representations of the world [24]. Issues include the computational
complexity of, e.g. theorem proving which affects whether an agent will be
able to reason in time, as well as how to create adequate symbolical represen-
tations of the real world. Furthermore, for such architectures it is assumed that
the environment does not change in a crucial way while an agent is reasoning.

In the mid-eighties, Rodney Brooks, a rather vocal critic of symbolic ap-
proaches, argued that intelligence is a result of the interaction of the individual
with the environment [28]. Moreover, the environment is its own model, and
thus an agent does not need a corresponding symbolical representation [29].
His ideas paved the way for the class of reactive architectures. He proposed
the Subsumption architecture [30], where an agent is composed of several
behavioural layers, placed one above the other, which compete for execu-
tion. Low layers deal with surviving behaviours such as collision avoidance,
whereas higher levels can be goal-fulfilling behaviours, and additionally they
can be inhibited by lower layers. As it turned out, such agents are simple to
build, non computationally expensive and robust, and able of performing some
tasks [24]. However, several issues arise that relate to whether (i) the avail-
able local information is enough in order to come to a good decision, (ii) they
can learn and improve over time, or (iii) more complex behaviours could be
achieved. Furthermore, these agents rely on the emergence of intelligence, and
the engineering of emergent behaviour is not straightforward. In order to take
advantage of the strong points of each paradigm, researchers have been work-
ing on hybrid architectures that combine symbolic reasoning and reactivity.
The goal is to make use of the sophisticated reasoning that is inherent for sym-
bolic agents, while still having agents that are able to react to a dynamic and
changing environment. One example is the TouringMachines architecture [31],
composed of layers in charge of planning and reactive behaviour among oth-
ers. However, such architectures are not conceptually and semantically clear as
symbolic architectures. Furthermore, it is not straightforward how these layers
should interact with one another [24].

Research on intelligent agents is quite relevant for the study of cognition.
Although the work in this thesis does not deal with cognition, it is worthy of
note how the paradigms of cognition relate to the classes of intelligent agents.
In fact, there are two broad classes of cognitive theories, the symbolic and
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emergent [32]. In the former, the basic assumption is that cognition stems
from the manipulation of symbols. Example architectures are Soar [33], ACT-
R [34] among others. In the latter, cognition stems from systems ability to
self-organise, while maintaining their autonomy in the process, e.g. AAR [32],
SASE [35], and DARWIN [36] among others. Researchers have pursued the
idea of hybrid cognition theories, the aim of which is to bring together the
strongest points of each paradigm, e.g. Cerebus [37], and Cog [38] among
others.

2.2 Multi-Agent Systems
A group of agents that interact with one another in order to fulfil common
tasks, while not necessarily having aligned objectives, is called a multi-agent
system (MAS) [39]. MAS are related with distributed problem solving (DPS)
research, both sub-fields of distributed artificial intelligence (DAI) [40]. Such
relation has been viewed from three perspectives [41]. The first view considers
DPS as a subset of MAS, i.e. a MAS system is a DPS if it is possible to
assume that agents are benevolent, have common goals, as well as a centralised
designer. Furthermore, in a DPS, the cooperation and coordination of nodes is
determined during the design, and thus cannot change during run-time [24].
In the second view, MAS research, which focuses on how to build agents with
certain properties and is interested in the emergent properties when these agents
interact, underlies DPS research. The latter takes agents with desired properties
as a given, and focuses on the achievement of external properties by the system
as a whole. In the third view, MAS and DPS are considered simply as two
different research agendas, in each of which researchers ask sets of different
questions. In MAS, the questions relate to how agent are built and how they
interact, whereas in the DPS case, the focus is on the external behaviour of the
system in terms of performance.

Generally, a MAS is characterised by five main properties [39]: (i) auton-
omy, i.e. the MAS cannot be controlled by an external party, (ii) knowledge,
in terms of skills and beliefs, is distributed, and control is decentralised, and
as a result agents need to interact in order to accomplish tasks that are beyond
the abilities of a single-individual [42], (iii) agents operate in a parallel and
asynchronous way [43], (iv) openness, MAS can be either open or closed sys-
tems in terms of the possibility of new individuals coming in during operation,
and (v) heterogeneity, where agents in the MAS can be either homogeneous or
heterogeneous with respect to one another. Three classes of MAS have been
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identified [39]: (i) MAS where agents are in the role of assistants to users and
interact with one another on the behalf of these users, (ii) MAS for simula-
tion used to model and study natural phenomena, and (iii) MAS for collective
problem-solving.

According to Ferber [44] MAS interaction types can be characterised with
respect to their goals, resources, competences, and situation type (Table 2.1).
Agents with compatible goals are indifferent to one another as long as they have
sufficient resources and competences. As soon as these agents have insufficient
resources, competences, or both, there is simple cooperation between them,
i.e. coordination between entities that have compatible goals [40]. On the
other hand, for agents with incompatible goals, interactions are rather antago-
nistic. Thus, cooperation requires negotiation between agents, or in the words
of Weiss, coordination between entities that do not have aligned goals [40]. In
this work, agents are assumed to have compatible goals, while either resources,
competencies, or both are insufficient.

2.3 Autonomy
The following paragraphs provide a discussion on the different definitions and
models of autonomy, as well as a research map of the different directions of
autonomy-centred research.

2.3.1 Definitions and Models
Autonomy has been defined in different ways over the past decades. It is pos-
sible to speak of autonomy in terms of two dimensions: (i) self-sufficiency,
i.e. the ability of performing tasks without external help, also referred to as
independence [11], and (ii) self-directness, i.e. the ability of selecting goals on
one’s own, respectively referred to as the descriptive and prescriptive dimen-
sions by Bradshaw et al. [45]. Vernon uses similar dimensions to characterise
robotic autonomy [27], in terms of strength of autonomy (self-sufficiency), i.e.
how much a robot can take care of itself for different degrees of uncertainties,
and degree of autonomy (goal-directedness), i.e. how much help is needed
from the human. On the other hand, autonomy is a relational concept [11],
and as such can either be defined with respect to other entities such as oneself,
e.g. between agents, also referred to as social autonomy, or between an entity
and its environment, i.e. how autonomous one is from the stimuli coming from
such environment. Furthermore, social autonomy can be expressed in indepen-
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dence (self-sufficiency) and in agency. The latter considers the autonomy of an
agent working on the account of another agent.

Depending on the view, an agent could be self-sufficient to some degree, or
have a particular degree to which it is working for other agents, ranging from
being exploited, having to obey, helping as a peer and so on [11]. Therefore, it
is possible to think in terms of levels of autonomy. In this regard, the ten levels
of automation were proposed [46, 47], with the intent of providing a guideline
for understanding and building systems that showcase different autonomy lev-
els (Table 2.2). In the lowest level the machine is merely a slave, and will do
the bidding of the human operator to the point. Going up in the levels, the
machine gets more and more initiative to perform specific tasks autonomously,
e.g. in layer 3 the machine can narrow down the selection of alternatives, or in
layer 8 where it will only inform the human if explicitly asked to do so. The
highest level corresponds to full autonomy and independence from the human.

Many more theories on autonomy have been brought forward, as well as
definitions as noted by Vernon [27], such as, adaptive autonomy, adjustable
autonomy, basic autonomy, belief autonomy, robotic autonomy, shared auton-
omy, sliding autonomy, to name a few. In some of these types, while there
are several levels of autonomy a system can operate at, the differences lie on
the actor that is able to change level, e.g. adjustable autonomy [6], where
the human decides the level of autonomy, sliding autonomy [48], where the
system can switch between tele-operation and full-autonomy on a task-level,
adaptive autonomy3 [6], where the system itself decides on its own level of
autonomy, mixed-initiative interaction [12], where both human and agent are
able to change the autonomy level, collaborative control [50], where the human
and the agent resolve conflicts through dialogue.

Castelfranchi defines agent autonomy using dependence theory [11]. De-
pendencies between agents define the autonomy levels they have with respect
to one another. These dependencies can be of different granularity, and is de-
pendent on the agent architecture. Assume an agent ai that intends to complete
a task. However, ai lack some of the means needed for performing such task,
e.g. information, know-how, planning abilities, skills, or material resources
among others. Further, assume the presence of an agent a j on which ai can
rely for what is needed for completion of the task. From this perspective, ai is
non autonomous from a j in that moment in time, with respect to the specific
task and the means that a j is providing. Johnson et al. similarly discuss about
potential inter-dependencies between different agents, which should be used in

3Note that, Vernon [27] maintains another view, discussed by Ziemke [49], in which adaptive
autonomy relates to the interaction between complex organisms and the environment.
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Table 2.2: The 10 levels of autonomy proposed by Parasuraman et al. [47]

Autonomy Lvl. Description

HIGH 10 The computer decides everything, acts autonomously,
ignoring the human

9 informs the human only if it, the computer, decides to
8 informs the human only if asked, or
7 executes automatically, then necessarily informs the

human, and
6 allows the human a restricted time to veto before au-

tomatic execution, or
5 executes that suggestion if the human approves, or
4 suggest an alternative
3 narrows the selection down to a few, or
2 The computer offers a complete set of decision/action

alternatives, or
LOW 1 The computer offers no assistance: human must take

all the decisions/actions

the design of joint-activity [7, 12].
In this thesis, adaptive autonomous agents are able to decide on their own

autonomy levels, as discussed by Hardin and Goodrich [51]. Furthermore,
based on Castelfranchi’s definition of agent autonomy [11], adaptive autonomy
is further defined in terms of changing dependencies between agents. Indeed,
at a time τ1 an agent might be able to complete a task on its own, however
at a time τ2, due to a possible change of circumstances, e.g. sudden drop of
the battery level, the agent cannot perform its task on its own. Thus, it will
ask for help, and depend on another agent, with respect to which it will not be
autonomous, in the context of the particular task.

2.3.2 Related Research Directions
Six main directions of research can be identified in the domain of autonomous
agents, as follows: (i) design methodologies, (ii) regulatory systems, (iii) agent
architectures, (iv) comparative studies, (v) human-machine interfaces, and (vi)
algorithms for changing autonomy levels.
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Design Methodologies. Design methodologies target the development of sys-
tems that change their autonomy levels. Johnson et al. emphasise the impor-
tance of considering interdependence between agents early on in the develop-
ment of systems that should support joint-activity [12]. Agents are considered
interdependent if they rely on others during the execution of their tasks. Fur-
thermore, interdependence could be either soft, i.e. relying on others is not
necessary but could improve performance, or hard, i.e. relying on others is
necessary to complete a task. Subsequently, the same authors proposed a de-
sign method based on the interdependence concept, with the aim of providing
engineers tools to be used during the design and implementation of systems
with adjustable autonomy [7]. The method consists of three steps. Initially,
potential interdependence relations are identified. Afterwards, mechanisms are
designed that can support them. Lastly, it is investigated how the mechanisms
affect the existing interdependent relationships.

Regulatory Systems. Regulatory systems refer to approaches based on poli-
cies and societal norms intended to shape agent behaviour. The main role of
such systems is to support predictability and bring about coordination between
agents [52]. Furthermore, regulatory systems can be used to enable changes of
autonomy in a community of agents. An example is the Kaa system [53], which
extended an existing policy system (KAoS), and allowed a central coordinator
to override or modify policies concerning specific agents during run-time, as a
response to the circumstances. The human was involved when Kaa would not
be able to make a decision.

Agent Architectures. Agent architectures have been developed in order to
provide support teamwork and autonomy level adjustment such as, STEAM
[54], DEFACTO [55], and THOR [56]. The STEAM architecture [54] ex-
tended Soar [57] by adding support for teamwork through the addition of team-
operators 4. Team operators are used to allow agents to reason about team
plans, additionally to their individual plans which do not require teamwork.
The proposal also consists of a synchronisation protocol between agents when
executing team plans. The DEFACTO framework [55] targets the provision
of support for transfers of control in continuous time, while simultaneously re-
solving human-agent inconsistencies, and making actions interruptible for real-
time systems. Team THOR’s entry in the DARPA Robotics Challenge [56]
consists of a motion framework for a humanoid robot which allows for low-

4This approach was based on joint-intention theory [58].
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level control, as well as scripted autonomy, i.e. invocation of robot movements
by calling predefined scripts, and supporting high-level commands from the
user.

Comparative Studies. Other researchers have focused on the investigation
of different schemes for switching between autonomy levels. Such studies
include comparisons of: (i) static autonomy versus dynamic autonomy [59],
and (ii) different implementations of dynamic autonomy, such as AA where
agents change their own autonomy, mixed-initiative interaction, and adjustable
autonomy [6]. In (i), several decision frameworks are identified such as master-
slave, peer to peer and locally autonomous, and switched in between in a series
of experiments in order to demonstrate the benefits of dynamic autonomy as
compared to static autonomy. Mapping between a decision framework and
conditions in the environment was determined beforehand. Indeed, the study’s
purpose was to motivate the design of systems that are able to change their au-
tonomy. Authors have shown that agents perform better when compared to the
cases where there is a single decision-making framework. In (ii), the three dif-
ferent schemes for changing autonomy levels were evaluated through a series
of experiments. These schemes were defined as follows. Adjustable autonomy
allows the operator to select the appropriate autonomy level, whereas adaptive
autonomy enables agents to decide themselves while always trying to main-
tain the highest level. Mixed-initiative interaction allows both operator and
robot to make changes on autonomy levels. Authors consider the cooperation
of a human operator with simulated robotic searchers, in the range of 200 such
searchers. Specifically, they look into the relation between operator workload,
prior knowledge, autonomy scheme, and the impact on performance. They
measure the performance through both primary metrics, such as number of in-
dividuals found, and secondary metrics, such as cues found in the environment.
They show that while adaptive autonomy performs better on the secondary
metrics, mixed-initiative interaction reports the highest score for the primary
metrics. This comes as a result of the fact that operators, when in possession
of relevant information, are able to have more influence on the robots. This
is not the case for robots with adaptive autonomy, which cannot take direct
commands, and attempt at all times to maintain the highest level of autonomy.

Human-Machine Interfaces. A prominent area of research is human-ma-
chine interaction, specifically mechanisms that allow both parties to learn from
one another, and change the autonomy as necessary. One such proposal in-
volves enabling a robot to perceive the human’s controlling skills, and adjust
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its level of autonomy accordingly [60]. Controlling skills involve a variety of
aspects such as navigation, manipulation (gripping faculties), and multi-robot
coordination. Others allow the user to control a robot at predefined auton-
omy levels such as: low-level body control, setting navigation way-points or
object selection, setting high-level goals such as “bring the can with a soft
drink” [61]. Issues concerning human aided coordination of teams of robots
which might need assistance occasionally, have also been tackled [62]. Such
interfaces need to provide all parties involved an overall view of state of affairs
at all times [63, 64] and their design also depends on how much autonomy a
system is supposed to have [65].

Algorithms for Changing Autonomy Levels. Several mechanisms for chang-
ing autonomy levels have been proposed. One approach consists in a meta-
reasoning model based on heuristics that defines how external factors influence
the behaviour of an agent [66]. Authors evaluate their approach in a fire-fighter
scenario, composed of fire-fighter agents, and a centralised coordinator – effec-
tively a superior to the agents. Every agent has two goals that involve putting
out fires, and maintaining health by allocating time to rest. The heuristics that
influence the reasoning are:

1. Task urgency. An agent will filter out information not related to a task
that has become urgent. Furthermore, a tired agent will increase the
urgency for taking a rest.

2. Dedication level. It is assumed that an agent is dedicated to its organ-
isation, and is thus more dedicated to the goals of the organisations
than self-set goals. Nevertheless, agents will decrease their dedication
if wrong information keeps coming from the coordinator – that repre-
sents the organisation – and define their own goals, e.g. which fires to
attend to.

It is shown that adaptive behaviour can be achieved through this model, and
that it performs better than the cases where no such meta-reasoning is used.
Brookshire et al. consider changing autonomy at the task level [48] to achieve
sliding autonomy. Consequently, an agent might be able to execute some task
autonomously, whilst it should be tele-operated for achieving another task.
Others, perform a task categorisation before hand, i.e. tasks that could be per-
formed autonomously, and tasks that need supervision from an operator [67].
Thereafter, such selection guides the design of algorithms. Unexpected events
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may lead to a human operator taking control and interrupting the on-going ac-
tivities of a team of robots. In order to provide support for such interruption, an
approach based on Coloured Petri Nets has been used to formalise team plans
and interruption mechanisms [68].

The research presented in this thesis deals with mechanisms that enable
agents to display adaptive autonomous behaviours as a response to their cir-
cumstances at any point in time, both from a purely distributed perspective and
in combination with centralised components. Furthermore, benefits of adaptive
autonomy with respect to static autonomy have also been investigated.



Chapter 3

Research Overview

This section provides an overview of the conducted research, and is structured
as follows. Initially, the addressed problem is described, from which the over-
all research goal of thesis and the investigated research problems are derived.
Thereafter, a compact description of the contributions of this thesis is given, as
well as the mapping between research problems and contributions. The chap-
ter concludes with an account of the research process, focusing on the adopted
evaluation method.

3.1 Problem Formulation
The development of autonomous systems, i.e. systems that are able to make
decisions and fulfil tasks on their own, has engaged researchers continuously
over the past decades. These systems are envisioned to be fully integrated in
everyday life, where they are able to collaborate with one another, as well as
with humans – either trained operators, users or simple bystanders – in order
to complete some task. Furthermore, such systems might need to collaborate
in such a way that they are able to adapt to changing circumstances that can be
a result of dynamic environments, changes in the capabilities or conditions for
performing the desired tasks. Thus, it is of interest to equip these systems with
local mechanisms that allow them to adapt their own autonomy, and collaborate
in any context1.

1Several researchers have taken their inspiration from human-like teamwork [13–15].
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This thesis tackles the design and evaluation of local mechanisms that en-
able a system, i.e. an intelligent agent as defined by Wooldridge [21], to col-
laborate with others as a response to changing circumstances so as to fulfil its
goals and optimise its performance, adapting its own autonomy in the process.
Thus, the research goal of this thesis is formulated as follows:

Research Goal. Model and control the adaptive autonomous behaviour of
agents in a MAS in order to optimise their performance, as compared to static
and reactive strategies, in the context of dynamic environments and circum-
stances.

In order to achieve this goal, four research problems RPs have been iden-
tified, each residing at a specific abstraction level, among survey, conceptual,
and problem levels.

RP 1. Identify the properties characterising MASs and multi-robot task allo-
cation problems (MRTA).

The first research problem involves understanding and analysing existing
research that has tackled MAS systems and MRTA problems, as well as iden-
tifying the properties that characterise them. RP 1 lies at the survey level, and
represents the groundwork for the thesis.

RP 2. Model the adaptive autonomous behaviour of an agent such that it en-
ables agents to change their autonomy levels and collaborate with one another
as a response to changing circumstances.

The second research problem lies at the conceptual level, and is considered
from a purely distributed perspective, i.e. the focus is on how agents in a MAS
can reason about their disposition to collaborate by asking and giving help
to one another. Such reasoning depends on the local state of each agent, e.g.
battery levels or skill set among others, and the local information that they have
access to at a given point in time. There are neither central components, nor
hierarchies assumed between agents.

RP 3. Integrate adaptive autonomous agents with centralised high-level plan-
ning in order to make use of the advantages of both paradigms, i.e. distributed
and centralised planning.

The third research problem lies as well at the conceptual level, and involves
investigating the adaptive autonomous behaviour of agents in a wider context,
by including in the loop a centralised component such as a high-level planner.
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The interest lies in how to integrate these two different approaches, in order to
exploit the advantages of both, i.e. optimality of the solution and robustness
displayed by the system, respectively.

RP 4. Apply an adaptive autonomous agent approach to specific problems in
order to optimise the performance of a MAS, and investigate the benefits of the
proposed approach.

The fourth research problem lies at the problem level, and focuses on the
applicability and efficiency of the proposed approach in solving specific prob-
lems within the MAS domain. Furthermore, by selecting well-known prob-
lems, it is possible to make comparisons with state-of-art methods and under-
stand the benefits and limitations of the proposed approach.

3.2 Research Contributions
This thesis consists of five contributions (C1-C5) which tackle the research
problems defined in Section 9.3. The first contribution is a survey on the tax-
onomies that target MAS properties and multi-robot task allocation (MRTA)
problems, and attempts to provide a common view on the different aspects that
characterise MRTA. Contributions C2 and C3 lie at a conceptual level. The
second contribution is a model for adaptive autonomy that underlies the col-
laborative behaviour of agents. Whereas, the third contribution aims to inte-
grate collaborative agents with high-level planning in order to make use of the
advantages of both paradigms. Contributions C4 and C5 are problem-oriented,
i.e. the focus is on how the proposed model (C2) can be adopted in solving spe-
cific problems. The fourth contribution relates to applying the model for agent
collaboration in solving the mobile multi-object κ-coverage problem. Finally,
the fifth contribution applies such model for extending network longevity and
coverage in mobile wireless sensor networks.

C1: Providing a unified view of taxonomies on multi-robot task allocation
problems.

Multi-agent and multi-robot systems (MRS) have been subjects of exten-
sive research in the past decades. Their distributed nature allows the represen-
tation of different stakeholders, i.e. different interests within the same applica-
tion, as well as to provide opportunities for boosting performance, scalability,
and robustness [2]. In the early 1990s and early 2000s, researchers mainly fo-
cused on the properties of MAS and on the collaborative behaviours such as
communication, topology, robot group composition, among others [2, 69, 70],
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while task allocation played a minor role. The first to shift the focus towards the
task allocation problem in MRS was Gerkey and Matarić [71], who proposed
three orthogonal dimensions for their classification: (i) single versus multi-task
robots, which relates to the ability of a robot to carry out several tasks in par-
allel, (ii) single versus multi-robot task, which refers to the number of robots
needed to perform a task, and (iii) instantaneous versus time-extended assign-
ment, the former allowing only immediate allocations of a new task without
consideration of other tasks, and the latter corresponding to allocations which
take into account how tasks might arrive in the future, or the whole set of
tasks. This taxonomy however, as pointed out by the authors themselves, did
not account for dependencies between tasks. Three independent works have
built upon the taxonomy proposed by Gerkey and Matarić [71], two of which
address the issue of dependencies [72, 73], while the third specifies further
the time-extended assignment dimension [74]. Concerning the former, Landen
et al. proposed to extend the initial taxonomy with the dimensions of unre-
lated versus related utilities between tasks, and independent versus constrained
tasks [72]. Whereas, Korsah et al. proposed the degree of inter-relatedness to
cover for both of those dimensions, which was based on their classification of
tasks [73]. Nunes et al. tackled the time-extended assignment and specified
it further with time windows, distinguishing between temporal and ordering
constraints, and synchronous precedence assignment [74].

Apart from the focus shift between the different works, these taxonomies
overlap with respect to the aspects they consider for MAS and MRS. In order
to address these overlaps and provide a structured overview of MRTA prob-
lems, the TAMER model was proposed (Task Allocation in Multi-Robot Sys-
tems through an Entity Relationship Model) in Paper A. As the name suggests,
the relevant aspects for MRTA problems are modelled through entities, and
the relationships between them, according to the Entity-Relationship model.
Four such entities have been identified: Robot, Task, Environment, Mission,
and nine relationships to be described briefly. The robot entity is specified
by the capabilities (hardware, software, concurrency), behaviour, state, and
id fields. The way in which robots create teams and communicate with one
another is captured by the teamed and communicate with relationships. The
environment entity is characterised by properties such as observability, uncer-
tainty, determinism, discreetness, state and id. The interaction between the
robot and environment entities is expressed through the act relationship. The
task entity is defined by fields such as type, required capabilities, interruption,
and id. Task decomposition and dependencies are captured by the decomposed
and depends on relationships. The mission entity is characterised by the objec-
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tives, constraints, and id. This entity is related to the environment, robot, and
task through deployed, includes, includes relationships respectively. The main
relationship in TAMER is the allocation which binds together a mission with
tasks and robots. The benefit of such approach is that it allows to add/remove
fields in a principled way, e.g. a new field can be added only if that informa-
tion cannot be deduced in the current form. Furthermore, with TAMER, it is
possible to define multiple missions, allocations, environments, concerning the
same agents/robots.

C2: Modelling the adaptive autonomous behaviour of agents through the will-
ingness to interact.
The collaboration between agents in a MAS, typically to complete a task that is
beyond the capabilities of a single agent, has an implication on the autonomy of
the agents involved. When agents collaborate, they are depending or allowing
others to depend on them for achieving a particular task τ. Moreover, such
dependencies can change in time. At a time t1 an agent ai is able to complete
τ on its own, whereas at a time t2 it needs to rely on another agent a j due
to, e.g. low battery levels. In the latter case, ai is not autonomous from a j
concerning τ. Therefore, depending on the circumstances, ai might need to
adapt its own autonomy level, and collaborate with others in order to achieve
τ. From the perspective of the agent that provides such help, two arguments
are made. As long as an agent is able to make its decision on whether to accept
or reject a request for help, it is considered autonomous. However, allowing an
external entity to influence one’s internal state or course of action – a j in order
to help ai needs to modify its current plans – is limiting the autonomy of an
agent. Such dynamics, of depending and assisting others, and in turn adapting
one’s own autonomy, are relevant for agents that collaborate. In fact, a fully
autonomous agent, that neither depends on others nor gets influenced by others
is not interesting in the context of a MAS, as it is in practice isolated from the
rest [75].

In order to model adaptive autonomous behaviour, which underlies collab-
orative behaviour, the willingness to interact abstraction was proposed (Paper
B). This formalism is composed of the willingness to give and ask for help,
thus capturing both aspects of an interaction. A mathematical framework for
the estimation of the willingness is presented which accounts for factors de-
termined as relevant to whether an agent should ask or give help, considering
as well the weight of each factor. In Paper B, nine such factors are described
that relate to different aspects of an agent such as: battery level, confidence on
own knowledge, efficiency of the skill set, accuracy of equipment, quality of
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resources, overall performance level, task progress/task trade-off2, likelihood
of succeeding in an environment, and the likelihood of a successful collabora-
tion with another agent. This list of factors is neither meant to be exhaustive,
nor necessary for every application domain, as shall be seen in Papers D and
E. Its purpose is to create an understanding of the different factors that can be
relevant for the willingness to interact.

The willingness to interact was evaluated in Paper B against the following
hypothesis:

Hypothesis. Agents with adaptive autonomy perform better than agents that
do not display such behaviour, in the context of a simulated search and rescue
scenario.

To this end, a simulation environment was setup, built upon the Robot Op-
erating System (ROS) middleware. Emergency sites, consisting of fires to be
extinguished and people to be evacuated, were generated randomly in 2D space
Z of given width and height. Three types of agents were implemented: (i)
fire-fighters whose goal is to go to an emergency site and put out fires, (ii)
ambulances that can take people from the emergency sites after the fires have
been put out, and (iii) police officers that scout the area and communicate a
detected emergency site. Independently of the role, an agent was designed as
a state machine with five states such as idle, execute, interact, regenerate, and
out of order. In idle agents perform random walks within Z in order to detect
an emergency site. Agents shift to execute once they have a task to perform
(extinguishing a fire, removing people from the site). The willingness to ask
for help will determine whether an agent will send a help a request, e.g. in case
its resources are out. When a request is received, an agent switches to interact,
where based on its willingness to give help will send a response to the agent
in need. The regenerate and out of order are auxiliary states. When an agent’s
battery is below a given threshold it will switch to out of order. Whereas when
an agent attempts to restore itself, e.g. by recharging, it switches to regenerate.
Simulations are run in two modes, static and dynamic, and at two difficulty
levels each. In the former, the components of the willingness are set at the
beginning of the simulation, and remain unchanged throughout. In the latter,
they adapt at every iteration. The difficulty is determined by the intensity of
the fires, and number of people trapped, while the initial resources of agents

2Note that the progress on a task influences an agent’s willingness to ask for help, whereas task
trade-off impacts an agent’s willingness to give help. The rest of the factors remain the same for
both components of the willingness to interact.
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remain the same. It was shown that, agents that are able to adapt their will-
ingness, perform better than their static counterparts in terms of: (i) dependent
tasks completed, i.e. tasks that were achieved with help from others, and (ii)
higher percentage of completed tasks with respect to returns to the base, where
an agent refills its resources.

C3: Integration of the agent approach based on the willingness to interact with
high-level planning.
Automated planning deals with the allocation of a set of tasks to a group of
agents or robots, such that the objectives of the system as a whole are achieved.
As unforeseen events occur while agents are executing their respective tasks,
initially devised plans are no longer feasible. Consequently, a re-planning pro-
cess is necessary, i.e. planning with new initial conditions, that takes into
consideration the current state of affairs, and reallocates the remaining tasks
accordingly. Solutions proposed to tackle the re-planning problem generally
fall in either of the following categories: centralised global re-planning, or in
distributed local re-planning. Centralised global approaches can produce opti-
mal plans if such exist, as well as account for the overall state of the system,
at the cost of being computationally heavy, with the centralised planner repre-
senting a single point of failure. Furthermore, while the time under disposal for
creating an initial plan is in principle unbound, the same does not hold for re-
planning. Distributed approaches on the other hand rely on agent cooperation
for solving issues that arise during operation. While there are no guaranties
of optimality, these approaches can produce good enough solutions within a
shorter time.

In order to exploit the strengths of both approaches, in terms of optimality
of solutions and robustness, a hybrid approach was proposed, named GLo-
cal. GLocal was adopted to solve a relaxed version of the Extended Coloured
Travelling Salesperson Problem (ECTSP) [76], that does not contain prece-
dence constraints as the original ECTSP. Consider a set of n tasks, v ∈ V :=
{v1,v2, . . . ,vn}, m agents, s ∈ S := {s1,s2, . . . ,sm}, and k capabilities, c ∈ C :=
{c1,c2, . . . ,ck}where m,n,k∈N. Every agent s∈ S is assigned a set of capabil-
ities Cs⊆ C . Each task v∈V requires one capability in order to be successfully
completed. A capability matrix of an agent s, As ∈ {0,1}n×n, can be defined
as:

ai js =

{
1, fc(vi) ∈ Cs∧ fc(v j) ∈ Cs

0, otherwise,
(3.1)

Agents are allowed to move in a 2D space Z, and are able to communicate
with each other with broadcast, without limitation in range. The problem is
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formulated as: allocate n tasks to m agents such that the given constraints in
terms of agent capabilities and task requirements are respected, in order to
minimise the make-span of a mission. The make-span is defined as the duration
between the starting time of the first task and end time of the last task over all
agents in a mission. GLocal enables agents to attempt a plan reparation through
agent negotiation, in the eventuality of an agent failure. In case the process of
re-allocating all tasks belonging to the failed agent does not succeed, then the
planner is invoked, which re-plans for all tasks and non failed agents based on
updated information, e.g. current agent locations.

GLocal was evaluated through computer simulations and compared with a
planner-only approach, considering different numbers of failures n f ∈{0,1,2,3},
and sizes of problem instances given by the number of tasks in a mission
sPI ∈ {50,100,150}. Failures refer to agents that break during execution, and
are as a result not able to perform any tasks or communicate with other agents.
No failure can make a mission infeasible, i.e. there is always an agent with
the required capability for performing a task. Therefore, all tasks will be com-
pleted eventually. It was shown with statistical relevance3, considering data
from 30 runs for each unique experiment, that using the GLocal approach short-
ens the execution times in presence of failures, as a result of the minimisation
of calls to the centralised global planner.

C4: Application of the willingness to interact formalism in hunting mobile
search.
The fourth contribution of this thesis builds upon contribution C2 and is problem-
oriented, i.e. it targets the application of the willingness to interact abstraction
for solving the online multi-object κ-coverage problem from the hunting mo-
bile search domain (Paper D). The proposed approach is compared with state-
of-art methods [77].

The online multi-object κ-coverage problem4 consists in having at least κ
agents covering every target in a given set. Several assumptions and limitations
hold. Agents have no initial knowledge regarding neither the whereabouts of
the targets, nor their number. Agents and targets are able to move within a
bounded 2D space Z, which has a known width and height. Both can move with
non-constant, yet limited velocity. Furthermore, agents have higher velocities
than any target. The size of each group is constant, thus no agent or target
can appear/disappear in Z. Agents have a visibility range within which they

3Given that the sample data has no normal distribution, i.e. data can be highly skewed and
can have extended tail, the median value was chosen over the mean value and consequently the
non-parametric Wilcoxon rank sum test was used.

4To be referred to from hereon as the κ-coverage problem for the sake of simplicity.
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are able to detect and observe any target. Targets have a constant interest level
perceived in the same way by all agents.

In order to solve the κ-coverage problem, agents need to continuously ex-
plore the area Z, and upon discovering a target create coalitions with κ mem-
bers tasked with following and covering such target. The creation of coali-
tions means that agents need to cooperate with one another for every target that
comes along. Therefore, such problem was considered suitable for the willing-
ness to interact abstraction, and was tackled in Paper D. The proposed solution
consists of three parts. The first part concerns the agent architecture, which was
adapted from Paper B to display behaviours needed for solving the κ-coverage
problem, i.e. explore area and follow targets. The second part focuses on the
willingness to interact. An important distinction is made in Paper D (relevant
also for Paper E) between the general disposition of an agent to cooperate with
others, and the disposition to cooperate over a specific task. The former de-
pends on the internal state of an agent, such as the battery level and the level of
activity of an agent (factors considered in Paper D). The latter depends on the
task at hand, specifically on the utility of an agent for completing such tasks. In
Paper D utility is impacted by the level of interest of targets. Thus, the willing-
ness to interact for a task is an aggregation of the factors reflecting the internal
state of an agent, and the utility for doing the task. The third part of the solution
consists of the interaction protocols put in place for the creation of coalitions
and the triggers that activate them. In Paper D four such triggers are used: (i)
a new target is spotted, (ii) a covered target is moving away from the visibility
range of an agent, (iii) an agent is trying to extend an existing coalition to κ
members, and (iv) an agent needs to ask for help5. The first three triggers are
dependent on the application domain, however the fourth one is inherent to the
agent itself.

The proposed approach was evaluated in simulation against six methods
from the state-of-the-art [77], based on the Robot Operating System (ROS)
middle-ware. Two scenarios were investigated, with static and dynamic targets
respectively. The performance metrics differ between scenarios because when
targets are static, after discovery they remain covered for the rest of the sim-
ulation. When targets are mobile such assumption does not hold. Therefore,
for the static scenario two metrics are considered: (i) average time to cover one
target with at least κ agents and (ii) minimum time to cover all the targets with
at least κ agents. Whereas for the dynamic scenario two other metrics are used:
(i) average time for which a target is covered with at least κ agents and (ii) aver-

5Note that the willingness to interact takes values in [−1,1]. A negative willingness denotes
that an agent needs to ask for help, while a positive willingness denotes that an agent can give help.
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age number of agents that cover one target. In each scenario simulations were
run for different numbers of targets nt ∈ {1,4,7,10,13,16,19}. It was shown
that, for the static scenario, the willingness to interact approach performs com-
parably well on average with respect to the rest. With respect to the dynamic
scenario, the method with the willingness is overall on the Pareto frontier, and
optimises the average number of agents covering a target, on average.

C5: Application of the willingness to interact formalism in mobile wireless
sensor networks.
The fifth contribution of this thesis also builds upon contribution C2 and is
problem-oriented, i.e. it targets the application of the willingness to interact
abstraction for extending the coverage and longevity of mobile wireless sensor
networks. The proposed approach is compared with a state-of-art method [78].

In MWSN the problem to be solved relates to finding strategies for the
positioning of nodes (agents) in the network – once nodes start depleting and
the initial deployment is no longer viable – such that the life of the network
is extended as much as possible, and the coverage of the area of interest is
maximised. The following assumptions hold. The area of interest, Z, is known
with defined width and height. The number of agents/robots, that are to cover Z
and maintain network connectivity, is given. The longevity of an agent depends
on its battery level, which in turn depends on how much an agent moves, and
how much traffic it routes.

In order to address this problem, a hybrid agent approach was proposed
(Paper E), which combines the agent approach based on the willingness to
interact, with a known reactive approach, namely the Social Potential Fields
algorithm (SPF) [78, 79]. This method consists of two phases – SPF and agent
negotiations – that alternate with each other during the lifetime of the network.
During SPF the network balances such that connectivity is not lost and agents
are not too close with each other. This is achieved by specifying several forces
that guide the motion of an agent. In this work three such forces were con-
sidered: (i) the repulsion force, intended to keep robots from hitting obstacles,
(ii) the deployment repulsion force, intended to have robots spread to farther
parts of Z, and (iii) the cohesion force, attraction toward the access point (AP),
intended to keep robots within a distance of each other in order to avoid loss
of communication. At the end of an SPF round nodes do not move any longer
and keep routing traffic. As time passes, nodes start depleting their battery
levels. Some nodes might deplete faster than others, as such it is of interest
to have the nodes with higher battery levels relocate to parts of the network
with higher traffic. The willingness to interact is applied here to determine
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the cooperative behaviour of the agents, and it depends solely on the battery
level, whereas the utility for going to a new position further refines the will-
ingness (similarly to C4). In order to evaluate the willingness the following
thresholds for the battery level are introduced: (i) bl0 the amount of battery an
agent needs to return to a collection point, namely the critical battery level; (ii)
blh given as 10% · bl0 + bl0, namely the hysteresis battery level; (iii) bl1 given
as 30% · bl0 + bl0, namely the level above which the robot is assumed to have
enough amount of battery left. This means that, a robot below bl1 is in need of
help, as opposed to an agent above bl1 which is able to give help. Moreover,
an agent below bl0 should drop its position and return to the collection point,
since it only has enough battery for covering that distance. The negotiation
protocol is triggered when at least one agent’s battery goes below the critical
level. Thereafter, all agents with negative willingness will ask for help, with
all the requests coming from agents with willingness below the hysteresis level
being regarded, as well as the ones with willingness no more than 20% over
the hysteresis level. The hysteresis level is used to identify agents which are
rather close to the critical level and allowing the network to adapt accordingly,
thus avoiding the activation of SPF every time a single agent reaches the crit-
ical level. When agents with positive willingness get a request for help, they
calculate the utility of going to the requested position. Two factors are con-
sidered in the calculation: (i) the distance to the new position and the distance
from the new position to the collection point, and (ii) the routed traffic at the
new position. The former will determine if the agent will take part in the nego-
tiation at all, i.e. if an agent does not have at least 30% of battery additionally
to what is required for the motion, then it will not interact further. Otherwise it
will increase/decrease the willingness for a lower/higher traffic load at the the
requested position.

The proposed approach was evaluated in simulation and compared against
the solution with only SPF. The impact of the cohesion force in each case was
also investigated by considering two different values α1,α2, where α1 < α2. A
total of four scenarios were considered, two with SPF with α1,α2 respectively,
and two with the hybrid approach with α1,α2 respectively. It was shown that,
the hybrid method with the lower cohesion force outperforms the rest with
respect to the coverage, longevity, and uniformity of the network. Indeed in
the combined approach the cohesion force does not have as much of a central
role because the nodes in the outskirts of the network – where the traffic is
low – tend to go toward the centre of the network, where the traffic is high.
Furthermore, the messages exchanged due to the negotiations in the network
are accounted for, and their impact has been shown to be negligible. Note that a
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Table 3.1: Mapping between research questions and contributions
C1 C2 C3 C4 C5

RP1 x
RP2 x
RP3 x
RP4 x x

limited flooding strategy is assumed, where each message sent is re-transmitted
by a node if the latter is located closer to the destination of the message.

The mapping between research problems and contributions is given in Ta-
ble 3.1.

3.3 Research Process
The research process followed for conducting the research described in this
thesis is structured as in Figure 3.1. Initially, a research problem is identified,
followed by a review of the literature which highlights the gaps where it is
possible to make a contribution. Potentially, the research problem could be re-
fined to accommodate for the knowledge gained during the review. Thereafter,
a hypothesis is formulated, along with several research questions, which nar-
row down the scope of the research problem. In order to tackle the research
questions, a solution(s) is proposed which is implemented, and finally eval-
uated through a scientific method. Depending on the outcome, the proposed
solutions can be modified to account for issues that were not foreseen initially,

Identify
Research
Problem

start Literature
Review

Hypothesis
& Research
Questions

Propose
Solution

Implement
Solution

Evaluate
Outcome

Figure 3.1: The research process



3.3 Research Process 31

or a problem in the implementation could be identified. Otherwise, the process
goes back to the literature review, and proceeds to the next round.

Research methods in computer science have been subject of several studies
which have in turn proposed road-maps and guidelines for conducting research
in the field [80–82]. Dodig-Crnković has identified three research methods that
can be adopted in a research project in computer science: (i) classical methods
and processes for building theories based on logics and mathematics adopted
in theoretical computer science, (ii) prototyping as an approach for solving
problems used in experimental computer science, and (iii) computer simula-
tions, generally used for the investigation of phenomena that either cannot or
are too costly to replicate in laboratories [83]. In this thesis, in papers Pa-
pers B-E the evaluation of the proposed approach is done through computer
simulations. Whereas, in Paper A taxonomies for MAS properties and MRTA
problems were identified and used as a basis for the proposed model.

There is a close relation between the computer simulation and MAS fields,
such that simulations can serve as tools in MAS research and vice-versa [84].
Concerning the former view, in the words of Shannon [85]: “The process of
designing a model of a real system and conducting experiments with this model
for the purpose either of understanding the behaviour of the system and/or
of evaluating various strategies (within the limits imposed by a criterion or
a set of criteria) for the operation of the system.” Classic examples of the
use of simulation as a computational tool for the evaluation of MAS are: the
Contract Net Protocol (CNET) [86], the Distributed Monitoring Vehicle Test-
bed (DMVT) [87], and MACE [88].

There are three key elements that make up a MAS [89], i.e. the agent, the
environment6, and the interactions between agents themselves and with the en-
vironment. In Papers B-D these three components were implemented on the
Robot Operating System (ROS) middle-ware. Every agent is a separate pro-
cess, or node in ROS terminology, and was modelled as a state-machine with
states covering behaviours such as idling, executing, and interacting, which
were specialised depending on the needs of each paper, e.g. in Paper D the
execute state consists of following a set of targets in the 2D space. Agents
communicate with one another with message passing using the broadcast, ser-
vice, and action server mechanisms available in ROS. The environment is a
separate node, which generates the 2D space, the tasks, such as emergency
sites, or targets, and runs the evolution functions for these tasks, e.g. the mo-
bility of targets. Furthermore, it keeps track of the location of all agents, and

6Note the difference between the environment as a model of the real world, and the software
infrastructure upon which the MAS is run. In this thesis, environment refers to the former concept.
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provides a locking mechanism (Papers C and D), such that no two agents initi-
ate a collaboration for one task at the same time. The communication between
agents and environment is performed with the ROS communication mecha-
nisms. Nodes run concurrently. On the other hand, the agent approach in
Paper E was evaluated in the simulator used for the evaluation of SPF [90],
proposed in previous work by the same authors [79]. This simulator is based
on the Player/Stage platform [91], covering both the simulation of agents and
of the 2D space within which agents move. There is no concurrency in this
model.

In simulation, two properties are desired: replicability and reproducibil-
ity. In regards to the former issue, the simulators and simulation code used
in Papers B-E have been made publicly available. Whereas reproducibility of
MAS simulations is dependent on the modelling of time, i.e. how agents and
environments evolve from one moment in time to another. Three main ap-
proaches are discussed in the literature: continuous time, discrete time, and
discrete event-based [84]. In Paper B there is no explicit modelling of time, i.e.
the system time is used. A more structured approach was taken for Papers C
and D, where time was modelled discretely. To this end, a clock node was im-
plemented, which would tick after all the agents and environment had updated
– run their evolution functions – once. The communication with the clock is
done through the ROS communication mechanisms. In Paper E a slightly dif-
ferent approach was taken. The simulation runs iterations until at least 30%
of the nodes are operating. One iteration consists of sequential updates of the
states of the agents and environment. When SPF is simulated alone [90], at the
end of every iteration, the simulation is forwarded to that point in time where
at least one agent goes out of order as a result of low battery (triggering the
execution of SPF). In the combined approach the simulation is slowed down,
i.e. the intermediate steps between the stabilisation of the network – nodes are
stationary – and the moment the first agents go out of order are of interest. In
that intermission agents ask for help, and negotiate with one another.



Chapter 4

Overview of the Included
Papers

Five papers are included in the thesis, referred to as paper A-E.

4.1 Paper A: TAMER: Task Allocation in Multi-
robot Systems Through an Entity-Relationship
Model

Abstract – Multi-robot task allocation (MRTA) problems have been studied
extensively in the past decades. As a result, several classifications have been
proposed in the literature targeting different aspects of MRTA, with often a few
commonalities between them. The goal of this paper is twofold. First, a com-
prehensive overview of early work on existing MRTA taxonomies is provided,
focusing on their differences and similarities. Second, the MRTA problem is
modelled using an Entity-Relationship (ER) conceptual formalism to provide a
structured representation of the most relevant aspects, including the ones pro-
posed within previous taxonomies. Such representation has the advantage of (i)
representing MRTA problems in a systematic way, (ii) providing a formalism
that can be easily transformed into a software infrastructure, and (iii) setting the
baseline for the definition of knowledge bases, that can be used for automated
reasoning in MRTA problems.

Authors: Branko Miloradović, Mirgita Frasheri, Baran Çürüklü, Mikael Ek-
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ström, and Alessandro V. Papadopoulos.
Status: Published at the 22nd International Conference on Principles and Prac-
tice of Multi-Agent Systems (PRIMA’19).
My contribution: With the first co-author we contributed equally to the devel-
opment of the idea, and the writing process of the paper. The other co-authors
provided comments and feedback throughout all the stages, and supported the
writing process.

Addressed RPs: RP1.

4.2 Paper B: Adaptive Autonomy in a Search and
Rescue Scenario

Abstract – Adaptive autonomy plays a major role in the design of multi-robots
and multi-agent systems, where the need of collaboration for achieving a com-
mon goal is of primary importance. In particular, adaptation becomes neces-
sary to deal with dynamic environments, and scarce available resources.

In this paper, a mathematical framework for modelling the agents’ willing-
ness to interact and collaborate, and a dynamic adaptation strategy for control-
ling the agents’ behaviour, which accounts for factors such as progress toward
a goal and available resources for completing a task among others, are pro-
posed. The performance of the proposed strategy is evaluated through a fire
rescue scenario, where a team of simulated mobile robots need to extinguish
all the detected fires and save the individuals at risk, while having limited re-
sources. The simulations are implemented as a ROS-based multi agent system,
and results show that the proposed adaptation strategy provides a more stable
performance than a static collaboration policy.

Authors: Mirgita Frasheri, Baran Çürüklü, Mikael Ekström, and Alessandro
V. Papadopoulos.
Status: Published at the 12th IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO’18).
My contribution: I was the main driver of the paper and contributed with the
idea, implementation, and writing. My co-authors provided feedback through-
out all the stages.

Addressed RPs: RP2.
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4.3 Paper C: GLocal: A Hybrid Approach to the
Multi-Agent Mission Re-Planning Problem

Abstract – Multi-robot systems can be prone to failures during plan execution,
depending on the harshness of the environment they are deployed in. As a con-
sequence, initially devised plans may no longer be feasible, and a re-planning
process needs to take place to re-allocate any pending tasks. Two main ap-
proaches emerge as possible solutions, a global re-planning technique using a
centralised planner that will redo the task allocation with the updated world
state information, or a decentralised approach that will focus on the local plan
reparation, i.e. the re-allocation of those tasks initially assigned to the failed
robots. The former approach produces an overall better solution, while the
latter is less computationally expensive. The goal of this paper is to exploit
the benefits of both approaches, while minimising their drawbacks. To this
end, we propose a hybrid approach that combines a centralised planner with
decentralised multi-agent planning. In case of an agent failure, the local plan
reparation algorithm tries to repair the plan through agent negotiation. If it
fails to re-allocate all of the pending tasks, the global re-planning algorithm
is invoked, which re-allocates all unfinished tasks from all agents. The hybrid
approach was compared to planner approach, and it was shown that it improves
on the make-span of a mission in presence of different numbers of failures, as
a consequence of the local plan reparation algorithm.

Authors: Mirgita Frasheri, Branko Miloradović, Baran Çürüklü, Mikael Ek-
ström, and Alessandro V. Papadopoulos.
Status: Submitted at the 1st International Conference on Autonomic Comput-
ing and Self-Organizing Systems (ACSOS’20).
My contribution: The work done on this paper is equally split between Branko
Miloradović and I. I developed and implemented the autonomous agents in
Python and ROS, while he focused on the development and implementation of
the planner in C++. We both worked on the integration part of the work. We
equally contributed to the paper’s idea, mission scenario creation, and analysis
of the obtained results. All co-authors contributed by discussions, feedback,
and reviewing the paper.

Addressed RPs: RP3.
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4.4 Paper D: Modelling the Willingness to Inter-
act in Cooperative Multi-Robot Systems

Abstract – When multiple robots are required to collaborate in order to accom-
plish a specific task, they need to be coordinated in order to operate efficiently.
To allow for scalability and robustness, we propose a novel distributed ap-
proach performed by autonomous robots based on their willingness to interact
with each other. This willingness, based on their individual state, is used to
inform a decision process of whether or not to interact with other robots within
the environment. We study this new mechanism to form coalitions in the on-
line multi-object κ-coverage problem, and compare it with six other methods
from the literature. We investigate the trade-off between the number of robots
available and the number of potential targets in the environment. We show that
the proposed method is able to provide comparable performance to the best
method in the case of static targets, and to achieve a higher level of coverage
with respect to the other methods in the case of mobile targets.

Authors: Mirgita Frasheri, Lukas Esterle, and Alessandro V. Papadopoulos.
Status: Published at the 12th International Conference on Agents and Artificial
Intelligence (ICAART’20).
My contribution: I was the main driver of the paper and contributed with
the idea, implementation, and writing. My co-authors provided comments and
feedback throughout all the stages.

Addressed RPs: RP4.

4.5 Paper E: Adaptive Autonomy in Wireless Sen-
sor Networks

Abstract – Moving nodes in a Mobile Wireless Sensor Network (MWSN) typ-
ically have two maintenance objectives: (i) extend the coverage of the network
as long as possible to a target area, and (ii) extend the longevity of the net-
work as much as possible. As nodes move and also route traffic in the network,
their battery levels deplete differently for each node. Dead nodes lead to loss of
connectivity and even to disengaging full parts of the network. Several reactive
and rule-based approaches have been proposed to solve this issue by adapting
redeployment to depleted nodes. However, in large networks a deliberative ap-
proach may increase performance by taking the evolution of node battery and
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traffic into account. In this paper, we present a hybrid agent-based architecture
that addresses the problem of depleting nodes during the maintenance phase
of a MWSN. Agents, each assigned to a node, collaborate and adapt their be-
haviour to their battery levels. The collaborative behaviour is modelled through
the willingness to interact abstraction, which defines when agents ask and give
help to one another. Thus, depleting nodes may ask to be replaced by healthier
counterparts and move to areas with less traffic or to a collection point. At the
lower level, negotiations trigger a reactive navigation behaviour based on So-
cial Potential Fields (SPF). Results show that the proposed method improves
coverage and extends the longevity of the network in an environment without
obstacles, by 50% and 13 days, respectively.

Authors: Mirgita Frasheri, Jose Cano-Garcia, Eva Gonzalez-Parada, Baran
Çürüklü, Mikael Ekström, Alessandro V. Papadopoulos, and Cristina Urdiales.
Status: Published at the 19th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS’20).
My contribution: I was the main driver of the paper and contributed with the
idea, implementation, and writing. The second co-author helped with the im-
plementation, writing of sections related to wireless sensor networks (together
with the third and last co-author), and provided feedback throughout all the
stages. The other co-authors provided comments and feedback throughout all
the stages.

Addressed RPs: RP4.

4.6 Other Papers
Other papers not included in the thesis are:

• “Test Agents: The Next Generation of Test Cases”. Eduard Paul Enoiu,
Mirgita Frasheri. 2nd IEEE Workshop on NEXt level of Test Automation
(NEXTA 2019).

• “Analysis of Perceived Helpfulness in Adaptive Autonomous Agent Pop-
ulations”. Mirgita Frasheri, Baran Çürüklü, Mikael Ekström. LNCS
Transactions on Computational Collective Intelligence (LNCS TCCI 2018).
Invited journal.

• “Comparison Between Static and Dynamic Willingness to Interact in
Adaptive Autonomous Agents”. Mirgita Frasheri, Baran Çürüklü, Mikael
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Ekström. 10th International Conference on Agents and Artificial Intelli-
gence (ICAART’18).

• “Algorithms for the Detection of First Bottom Returns and Objects in
the Water Column in Side-Scan Sonar Images”. Mohammed Al-Rawi,
Fredrik Elmgren, Mirgita Frasheri, Baran Çürüklü, Xin Yuan, José-Fernán
Martı́nez-Ortega, Joaquim Bastos, Jonathan Rodriguez, Marc Pinto. OCE-
ANS’17 conference at the AECC.

• “An Optimized, Data Distribution Service-Based Solution for Reliable
Data Exchange Among Autonomous Underwater Vehicles”. Jesús Rodrı́-
guez Molina, Sonia Bilbao, Belén Martı́nez, Mirgita Frasheri, and Baran
Çürüklü. Sensors 17, no. 8 (2017): 1802.

• “Failure Analysis for Adaptive Autonomous Agents using Petri Nets”.
Mirgita Frasheri, Lan Anh Trinh, Baran Çürüklü, Mikael Ekström. 11th
International Workshop on Multi-Agent Systems and Simulation (MAS&-
S’17).

• “Towards Collaborative Adaptive Autonomous Agents”. Mirgita Frash-
eri, Baran Çürüklü, Mikael Ekström. 9th International Conference on
Agents and Artificial Intelligence 2017 (ICAART’17).



Chapter 5

Conclusion

In this thesis, a formalism for modelling adaptive autonomous behaviour has
been proposed, which underlies collaboration between agents in a MAS. The
key concept of the formalism is the willingness to interact, composed of the
willingness to give and ask for help. A mathematical framework has been
designed which can be used for the evaluation of the willingness based on the
factors that should have an impact in the decision-making of an agent, and their
respective weights. The factors adopted in the included papers do not repre-
sent an exhaustive list. Indeed their selection depends on what is considered
relevant in a specific application domain.

The willingness to interact formalism has been adopted in solving two
problems such as (i) the κ-coverage from the hunting mobile search domain,
and (ii) the coverage and network longevity problems from the mobile wireless
sensor network domain. In the former case, the approach with the willingness
was compared against six state-of-art methods, and improved the κ-coverage
metric in scenarios with mobile targets, as well as overall residing in the Pareto
frontier. In the latter case, the willingness formalism was combined with a reac-
tive algorithm, namely the social potential fields (SPF), and compared against
a purely SPF approach. Results have shown how the combined approach out-
performs SPF, in terms of coverage and uniformity of the network, while con-
sidering its longevity.

The willingness to interact formalism is purely distributed, i.e. each agent
computes its disposition to collaborate based on its local information. While
distributed approaches can provide flexibility in terms of graceful degradation
of the system in the presence of failures, centralised approaches can provide
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optimal solutions in terms of task allocation. This thesis further contributes
by integrating these two paradigms, specifically the willingness to interact and
centralised high-level planning, in order to exploit the advantages of both. This
hybrid approach produced lower mission make-spans, and reduced calls to the
centralised planner, as compared to the purely centralised approach.

Conclusively, the work described in this thesis tackles the problem of real-
ising adaptive autonomous agents from several perspectives, i.e. by consider-
ing only the collaboration between agents, by considering the collaboration of
agents with centralised approaches, and finally by applying the collaboration
formalism for solving concrete problems and as a result directly comparing
with other relevant work.



Chapter 6

Future Work

There are several research directions of interest that could be investigated in
future work such as:

Trust in MAS: The concept of trust can be viewed either in the context of
a human trusting the execution of an autonomous system and the information
it provides, or in the context of an autonomous systems trusting the execution
and information provided by another autonomous system. Regarding the first
point of view, Winikoff has proposed three necessary prerequisites for achiev-
ing the trust of a human with respect to an autonomous system [92], such as the
provision of a framework that allows for alternative courses of action in case
the autonomous system behaves in a negative way, ability of the autonomous
system to explain itself, and verification and validation of the system, e.g. for-
mal verification. It is noted that each of these prerequisites comes with its own
challenges, making the issue of trust a multi-faceted problem. Concerning the
second point of view, due to the fact that agents might come from different
vendors and are designed with different purposes in mind, benevolence cannot
always be assumed. Therefore, it is crucial to investigate how the trust layer
can be captured in the formalisms modelling collaborative behaviour between
agents, to ensure that benevolent agents are not cheated or lied to during their
execution.

Human-in-the-Loop: Agents and robots are envisioned to collaborate in
teams also consisting of humans, either as operators, users, or by-standers.
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Therefore, the interaction between humans and agents/robots needs to be ex-
plicitly addressed, in order to provide models that enable smooth cooperation
between them. Such cooperation, and transfers of control between agents and
humans are the subject of study of Adjustable Autonomy, that allows the hu-
man operator to define the appropriate level of autonomy for an agent. Several
issues challenges arise in this context, such as the minimisation of operator
workload, and its relation to the levels of autonomy; and the reduction of the
opacity of a situation from the point of view of the human operator, that comes
as result of loss of situation awareness and common ground between differ-
ent parties. Finally, an adaptive autonomy approach could be combined with
adjustable autonomy, and shift into what is called mixed-initiative interaction,
allowing both human and machine to adapt autonomy levels.

Safety and Security: Collaboration between autonomous entities raises safe-
ty and security issues that need to be addressed, if such systems are to be inte-
grated in everyday life. Such concerns come as a result of enabling agents to
interact with humans, as well as to adapt to what is happening around them, e.g.
by relying on information coming from others. Furthermore, mobile agents
pose additional threats, as their mobility creates opportunity for spreading po-
tential false or misleading information fast. Key challenges remain: authen-
tication, authorisation, integrity, availability, and confidentiality [93]. Conse-
quently, it is necessary to investigate how such issues can be tackled during the
design and implementation of adaptive autonomous systems, with and without
the human in the loop.

Industry 4.0: The emergence of the fourth industrial revolution, Industry4.0
(I4.0), has brought forward new problems in which MAS-based approaches
could be applied. Industry4.0 started as a national initiative to prepare the Ger-
man manufacturing industry for the future of production systems, and turned
quite quickly into a global initiative intended to affect not only the internal
operation of factories, but the development and maintenance of smart future
societies and cities [94]. In order to realise this vision, entities, e.g. cyber-
physical systems (CPSs), will be connected to one another through enabling
technologies such as the internet of things (IoT) and the internet of services
(IoS), where they will continuously communicate and cooperate, e.g. in the
context of a smart factory, in order to deliver highly customised products and
adapt to customer needs, while shortening the time-to-market of these prod-
ucts. An agent in a MAS, as defined in 2, and a CPS are quite close con-
ceptually. Indeed, a CPS is a system composed of (i) hardware with which it
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can sense/actuate in its environment, and (ii) software with which it processes
the incoming data from the sensors and controls its actuators in order to fulfil
specific goals. From an agent perspective, autonomy is rather central to the def-
inition, i.e. the ability to make decisions and act autonomously from external
entities – other agents or humans. Within the context of I4.0, CPSs are ex-
pected to interact with one another in a dynamic way, make decisions, adapt to
changes in the environment or system configurations. Therefore, the presence
of some level of autonomy is implied. Furthermore, it has been observed that,
challenges for CPSs and CPPSs (cyber-physical production systems), relevant
from the perspective of this thesis, lie at the intersection between distributed
computing, distributed problem-solving, autonomous system components, and
network-based system, and have a close relation to MAS, conventional optimi-
sation techniques, cloud abstractions, and semi heterarchical and heterarchical
systems — where the organisation between entities is dynamic [95,96]. In this
context, there is a need for mechanisms that can enable systems to collaborate
with one another, when the need arises, in order to fulfil the desired tasks and
goals.
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dustry 4.0. SAGE Open, 6(2), 2016.

[95] Luis Ribeiro. Cyber-physical production systems’ design challenges.
IEEE International Symposium on Industrial Electronics, pages 1189–
1194, 2017.

[96] Luis Ribeiro and Mats Bjorkman. Transitioning from Standard Automa-
tion Solutions to Cyber-Physical Production Systems: An Assessment of
Critical Conceptual and Technical Challenges. IEEE Systems Journal,
12(4):3816–3827, 2018.



II

Included Papers

55





Chapter 7

TAMER: Task Allocation in
Multi-Robot Systems
Through an
Entity-Relationship Model
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Abstract

Multi-robot task allocation (MRTA) problems have been studied extensively in
the past decades. As a result, several classifications have been proposed in the
literature targeting different aspects of MRTA, with often a few commonali-
ties between them. The goal of this paper is twofold. First, a comprehensive
overview of early work on existing MRTA taxonomies is provided, focusing on
their differences and similarities. Second, the MRTA problem is modelled us-
ing an Entity-Relationship (ER) conceptual formalism to provide a structured
representation of the most relevant aspects, including the ones proposed within
previous taxonomies. Such representation has the advantage of (i) represent-
ing MRTA problems in a systematic way, (ii) providing a formalism that can be
easily transformed into a software infrastructure, and (iii) setting the baseline
for the definition of knowledge bases, that can be used for automated reasoning
in MRTA problems.
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7.1 Introduction

In the past decades, the interest in Multi-Agent Systems (MASs) has grown
due to their suitability in representing applications where actors have different
interests, and to their distributed nature that increases performance, scalability,
and robustness [1]. Earlier papers from the 1980s and 1990s mostly focused
on the properties and collaborative behaviour of MASs putting the emphasis on
the specific aspects of the problem to be solved, e.g., communication, topol-
ogy, robot group composition, and collaborative behaviour. Proposed solutions
were usually verified in simulation environments.

As the complexity of the MAS missions started to increase, e.g., in terms
of number of required agents, number of tasks to be completed, heterogeneity
of capabilities required to complete some tasks, etc., more attention has been
devoted to the multi-robot task allocation (MRTA) problem, which has be-
come an established research direction [2]. In order to tame such an emerging
complexity, several taxonomies have been proposed in the literature. Gerkey
and Matarić [3] introduced the first taxonomy for MRTA problems, proposing
three main dimensions that specified the type of tasks, type of robots, and type
of assignment. Other taxonomies have been proposed in the following years,
further highlighting the complexity of the MRTA problem. However, most of
them are do not build on previous ones, leading to a fragmented and possibly
overlapping set of taxonomies.

This paper surveys the existing taxonomies, in order to capture the im-
portant dimensions of MRTA problem configurations and to understand dif-
ferences and similarities. In addition, this paper presents the Task Alloca-
tion in Multi-Robot System Entity-Relationship (TAMER) model, an Entity-
Relationship (ER) model that captures the most relevant aspects of the sur-
veyed MRTA taxonomies. The goal of TAMER is to provide a unified view
of the existing taxonomies, and a tool to classify and relate the different di-
mensions in a more structured and systematic way. Adding new dimensions on
top of existing taxonomies requires a clear understanding of how they could fit
in the big picture. In fact, newly proposed aspects may overlap with, may be
coupled with, or may contain certain properties already captured by other di-
mensions. TAMER simplifies such process providing a more formal approach
to tame the complexity of the MRTA taxonomy problem. TAMER offers a
general model that includes the different dimensions proposed by the surveyed
taxonomies (Section 7.2), and it can be thought of as a unifying approach to
the MRTA taxonomy problem, allowing for extending the classification with
new dimensions in a non-redundant way, in the attempt of providing a unique
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framework for the definition of the relevant dimensions in MRTA problems.
The contribution of this paper is twofold: (i) To provide an overview of

MRTA taxonomies, analysing how the research axes evolved over the past few
decades, and identifying differences and similarities among them (Section 7.2);
(ii) To formalize the MRTA problem through TAMER, an ER conceptual model
that includes the most relevant aspects of the identified MRTA research axes
(Section 7.3).

7.2 Overview of the MRTA taxonomies

The categorization of the MRTA problems across various dimensions has been
extensively investigated by several researchers in the past three decades. Ear-
lier taxonomies [1,4,5], from the 1990s and the beginning of 2000s, focus more
on the communication, the cooperation, and the robot capabilities dimensions.
Table 9.2 summarizes the main surveyed taxonomies, and the respective pro-
posed dimensions. In these taxonomies, the task allocation dimension plays
a minor role. The work presented by Gerkey and Matarić [3] is the first one
to shift the focus from former dimensions, into the direction of task alloca-
tion. This trend has been followed in the past decade and a half, expanding the
original MRTA dimensions [6–8].

The group composition represents a crucial aspect of a MAS, and has been
addressed explicitly as the group architecture and size [4], collective com-
position [5], and degree of heterogeneity [1]. The robot group composition
has been addressed in the original MRTA taxonomy with the introduction of
Single-Robot (SR) and Multi-Robot (MR) tasks, and Single-Task (ST) and
Multi-Task (MT) robots dimensions. In order to have heterogeneity in the
robot group composition, individual robots must have different capabilities.
The range of robot capabilities is very broad going from the ability to model
other agents and learning [4], processing ability [5], to the ability to perform
tasks concurrently [3].

The communication and topology dimensions were an important part of
early taxonomies, however, with the shift of focus towards task allocation and
task interrelatedness, the communication was usually assumed to be failure-
free and it did not have an effect on the problem configuration or solution
design. Nevertheless, these dimensions are of major importance in MASs and
they have been divided into several sub-dimensions. They include the way of
interaction [4], the communication range, bandwidth, and topology [5], and the
communication language and protocols [1].



7.2 Overview of the MRTA taxonomies 61

Ta
bl

e
7.

1:
Su

m
m

ar
y

of
th

e
pr

op
os

ed
di

m
en

si
on

s
cl

as
si

fic
at

io
n

in
M

R
TA

ta
xo

no
m

ie
s.

D
im

en
si

on
R

ef
er

en
ce

D
ud

ek
et

al
.[

5]
C

ao
et

al
.[

4]
St

on
e

et
al

.[
1]

L
au

&
Z

ha
ng

[9
]

G
er

ke
y

&
M

at
ar

ić
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Another fundamental aspect in MASs is the interaction among agents, which
can be intentional or emergent [4]. Furthermore, agents can have competitive
or benevolent behaviour, negotiate and make commitments in order to reach
their goals [1]. In later papers, the cooperation is usually assumed to be in-
tentional and benevolent [3, 7] or it is not been taken into account at all [6, 8].
When resources are finite [9], resource conflict may arise [4], thus a resource
manager is needed [1]. Conflicts can be related to sharing space, objects,
equipment, or communication. If agents are physical units acting within an
environment, geometric problems may occur [4]. The environment is classi-
cally classified as static or dynamic [6]. Sudden and unplanned changes in the
environment may have different consequences on the problem configuration,
ultimately leading to a task re-allocation.

Another major part of the MRTA taxonomy is the task allocation dimen-
sion. This dimension can be further divided into Instantaneous Assignment
(IA) and Time-Extended Assignment (TA) [3]. If the allocation is done by
an agent, then the allocation is internal and is considered as a task in MAS,
otherwise, it is assumed that the allocation process is external [6].

In order to cover the gaps that were left by the taxonomy proposed by
Gerkey and Matarić [3], by not addressing interrelated utilities and task con-
straints, several different taxonomy additions were proposed [6–8]. Landén et
al. [6] defined unrelated utilities and interrelated utilities as well as independent
tasks and constrained tasks. On the other hand, Korsah et al. [7] covered both
of these dimensions with a single dimension: the degree of interrelatedness.
Although not identical, these concepts are related, so both utilities and con-
straints have an impact on the degree of interrelatedness between both agents
and tasks. Instead of utility, Lau and Zhang [9] express the degree of objec-
tive fulfilment in profit. Although Gerkey and Matarić [3] state that their work
does not include interrelatedness between tasks explicitly, it can be noted that
MR tasks do require some sort of synchronization between robots, while MT
robots must have intra-related schedules in the case of TA. In addition, Nunes et
al. [8] distinguish between temporal and ordering constraints, by adding Time
Windows (TW) and Synchronization Precedence (SP) under TA. Furthermore,
MRTA problem can be deterministic if the output of the model is completely
determined by the initial conditions or stochastic if a model of the uncertainty
is available. Despite the importance of uncertainty in robotics, most MRTA
models are deterministic and deal with uncertainty only at execution time. Fi-
nally, all constraints can be divided into hard and soft constraints.
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Figure 7.1: The TAMER model.

7.3 The TAMER Model

The TAMER model (shown in Fig. 7.1) aims at covering the relevant aspects
of the MRTA problem, by adopting a systematic approach to unify the dif-
ferent dimensions presented in the former taxonomies. TAMER is an Entity-
Relationship (ER) model that defines the relevant entities of MRTA, and how
they relate among them. TAMER unifies the previously proposed taxonomies,
in a unique taxonomy that makes sure that the different dimensions are all
necessary and sufficient to describe the fundamental problem configuration.
TAMER also includes for all the entities and relationships a minimal set of at-
tributes that captures the most relevant aspects presented in former taxonomies.
Note that the proposed set of attributes does not aim for completeness, but it
represents a core set that can be easily extended thanks to the TAMER ap-
proach.

7.3.1 Entities

TAMER consists of four entities: (i) Robot, (ii) Environment, (iii) Task, and
(iv) Mission.

Robot. The Robot entity consists of the state, behaviour and capability
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attributes1. The state attribute covers those variables that are considered of
interest in a particular context, e.g., velocity, position, orientation, and battery
level. Different contexts might require different sets of variables, thus the state
attribute is not specified in detail. The behaviour refers to the level of autonomy
displayed by a robot. A robot might be able to display a particular level of
autonomy that is fixed over time, or the level of its autonomy can be adaptive.
Due to changing circumstances, the dependencies among robots can change,
and, as a result, the autonomy levels change as well [10]. Both adaptive and
fixed autonomy have an impact on the cooperation among the agents. Whereas
the former allows for dynamic patterns and different levels of cooperation, the
latter implies fixed patterns and a predefined level of cooperation.

The capability attribute covers the abilities of a robot, both at the hard-
ware and software levels. These abilities can correspond to different levels of
abstraction. For instance, at a low-level an ability might refer to processing
power, concurrency, and/or computational resources, whereas at a high-level
an ability might relate to being able of doing some action, e.g., grasping a
mug.

Environment. The Environment entity is characterized by the following
attributes: state, observability, uncertainty, determinism, discreetness, and ad-
ditional constraints. As for the state attribute, different variables that describe
the environment could be relevant in different contexts, e.g., the location of
dynamic obstacles at a specific timestamp. The observability attribute takes
values such as complete, partial, or no information. The uncertainty, on the
other hand, refers to the dynamics in the environment, i.e., whether the envi-
ronment does not change (closed) or changes overtime (open). Determinism,
discreetness are characteristics described by Russell and Norvig [11, Chapter
2]. The additional constraints attribute serve the purposes of describing the
environment in terms of rules and laws that are applicable and shape how the
problem is formulated.

Task. The task entity consists of type. required capabilities, and interrup-
tion attribute. The task type attribute is identical to the Gerkey and Matarić [3]
definition of SR and MR tasks. Required capabilities attribute describes the
capability a robot needs to possess in order to execute a certain task. If a task
can be temporarily interrupted without requiring its cooperation, in order to
do some other task, then the task being interrupted is said to be preemptive.
Preemptive tasks are of very common occurrence in real-time systems.

Mission. Mission entity encapsulates mission objectives, available resourc-

1All entities have an ID attribute, that uniquely distinguishes between instances of the same
entity. The ID is not further discussed in this paper.
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es, and constraints that are part of the problem domain. This is where the prob-
lem configuration as well as the objectives are defined. Mission constraints are
constraints, which are imposed by some external actor, which is configuring
the mission problem, e.g., human operator. These constraints can relate to re-
sources, robots, tasks, and environment. For example, a constraint, which says
that robot i can use at most 50% of its battery is considered to be resource con-
straint. Similarly, a set of n tasks to be completed is a task constraint. TW are
another example of task constraints. A robot constraint may restrict, e.g., the
number of robots that can be used in a specific mission. Specific constraints
can be imposed regarding environment, e.g., in the form of forbidden areas,
which must not be visited, or crossed.

7.3.2 Relationships
TAMER also includes nine relationships: (i) Teamed, (ii) Communicate with,
(iii) Act, (iv) Depends on, (v) Decomposed, (vi) Allocation, (vii) Includes
Robot, (viii) Includes Task, and (ix) Deployed.

Teamed. Robots can be part of teams within a MAS, and as such be in a
Teamed relationship with one another. Attributes that characterize such rela-
tionship are state, behaviour, role, and dynamics. The state of a team could be
specified by the size of the team, its composition in terms of robot capabilities,
and the behaviour of the team. This attribute is similar to the behaviour at-
tribute of the robot entity, however in this case it refers to the overall behaviour
of the team that emerges from the local robot behaviours. The role attribute de-
scribes what hierarchical position a robot has in a particular team, e.g., leader
or peer. The dynamics attribute refers to whether the team can change in time
in terms of composition or hierarchy, among other variables.

Communicate with. Communicate with is also a relationship between
robots, and has four attributes: type, range, bandwidth, and way of interac-
tion. Communication type includes broadcast and one-to-one communication.
Range and bandwidth describe physical properties of the communication chan-
nel. Way of interaction expresses whether a robot communicates directly with
another robot, or indirectly, e.g., stigmergy where communication happens via
the environment. The problem can depend on the upper bound of the band-
width and range, which is a characteristic of a specific environment. Notice
that the specification of this relationship defines the network topology, i.e.,
which robot communicates with whom.

Act. The Act relationship connects the robot and the environment entities
to each other. A robot can act in an environment, and as a result have an
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impact on the state of the environment. Similarly, the environment can act on
the robot and affect its state. This relationship is characterized by the type of
action, parameters of the action, and affect on environment. A specific action
can be described by a set of parameters, e.g., the action name could be one such
parameter which defines what the action is. More parameters could be specified
depending on the need. The affect on the environment attribute distinguishes
between active and passive actions on the environment. The former covers
actions that change the environment, whereas the latter covers actions that do
not change the environment, e.g., a robot’s movement.

Depends on. Depends on is a relationship between task entities describing
their dependencies. This relationship has a type attribute. The type attribute,
specifies what is the type of task dependency, i.e., inter-dependent (there are
dependencies within robot’s schedule), and cross-schedule dependent (there
are dependencies within different robots’ schedules). These dependencies can
be utility related, synchronous, or time windows. Ordering constraints are
treated as a special case of synchronization constraints.

Decomposed. Tasks can be atomic or divisible. The representation of the
tasks is a design choice, and it may depend on the final purpose of the model-
ing. Tasks that are considered atomic from a high-level planning perspective,
can be seen as divisible at the low level perspective, e.g., when agents need
to coordinate to complete a more complex task. For example, Miloradović et
al. [12] considered MR tasks as atomic in a high-level mission planning ap-
proach, while Zlot [13] deal with the task decomposition and allocation with
Logical Operators (LO).

Allocation. The main relationship in the taxonomy that binds together
mission, task, and robot entity is the allocation. The allocation can assign
0 . . .T tasks to 0 . . .R robots. If 0 tasks are assigned to 0 robots it means there
is no allocation, hence no mission. However, it is still possible to have 0 tasks
allocated to m robots, meaning that these m robots will not be used in a mission.
The allocation consists of allocation type (IA or TA), allocation view (internal,
external [6], or hybrid) and utility function.

Includes. The includes relationship connects the mission with the robot
and task entities. This defines which tasks and robots are included in the mis-
sion. To have a mission, there must be at least 1 task allocated to at least 1
robot.

Deployed. After the allocation is done for a defined mission, through the
deployed relationship the mission is deployed in the environment for execution.
This means that missions are further constrained and shaped by the specific
environment they should be executed in.
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7.3.3 Discussion
The MRTA problem needs to consider all the presented aspects in order to
represent a specific deployment. MRTA algorithms are in charge of populating
the allocation relationship, based on the set of available robots, on the mission
composed of the different tasks, and on the description of the environment.

The need for the TAMER model is motivated by the emerging complex-
ity, both of the MRTA taxonomies and MAS missions. Most of the proposed
taxonomies analyze the MRTA problem from different angles, and possibly
introducing additional dimensions that are indirectly covered by other ones.
TAMER model has several advantages. First, it allows for a systematic and
structured representation of MRTA taxonomies. In fact, the taxonomies pre-
sented in Section 7.2 are included or can be reduced to specific instances of
the TAMER model, avoiding redundancies and overlaps. For example, differ-
ent topologies of communication are not directly represented in the TAMER
model, but are a result of the relation Communicate with, that specifies the ad-
jacency matrix of the communication topology, including additional attributes,
such as the Range, the Bandwidth, and the Way of Interaction. Also, in TAMER
all the attributes are assumed to be able to vary over time, while keeping a con-
sistent knowledge base of the problem configuration.

The second important advantage of TAMER is that it adopts a classical ap-
proach for data/knowledge representation. As a result, TAMER defines a com-
plex data structure that can be used for the definition of software infrastructures
in MRTA problems, and for MRTA algorithms. Moreover, the TAMER model
can be extended to include additional semantics to enable automated reasoning
in MRTA problems.

Finally, TAMER adds two additional research axes: Multi-Mission prob-
lems and Multi-Environment problems. It allows multiple missions to be de-
fined and deployed in the multiple or shared environment with the possibility
of sharing robots and resources among the missions. The multi-mission and
multi-environments aspects have not been extensively explored.

7.4 Conclusion
This work provides an overview of the main taxonomies for MRTA problems,
analyzing and relating the different components (in this paper referred to as
axes, or dimensions) proposed in the literature. Such dimensions may overlap
or represent different aspects of the MRTA problem, but they seldom provide
a general view on it. In order to tame the emerging complexity coming from
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the different taxonomies, we proposed TAMER, an ER model that provides
a unified view on the MRTA problem, with the aim of remove potential re-
dundancies in the classification, as well as a structured way to add or remove
additional dimensions. As future work, TAMER can be extended to define a
knowledge base for enabling automated reasoning in MRTA problems.
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[12] Branko Miloradović, Baran Çürüklü, and Mikael Ekström. A genetic mis-
sion planner for solving temporal multi-agent problems with concurrent
tasks. In ICSI, pages 481–493, 2017.

[13] Robert Michael Zlot. An Auction-Based Approach to Complex Task Al-
location for Multirobot Teams. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, 2006.



Chapter 8

Adaptive Autonomy in a
Search and Rescue Scenario
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Abstract

Adaptive autonomy plays a major role in the design of multi-robots and multi-
agent systems, where the need of collaboration for achieving a common goal
is of primary importance. In particular, adaptation becomes necessary to deal
with dynamic environments, and scarce available resources. In this paper, a
mathematical framework for modelling the agents’ willingness to interact and
collaborate, and a dynamic adaptation strategy for controlling the agents’ be-
havior, which accounts for factors such as progress toward a goal and available
resources for completing a task among others, are proposed. The performance
of the proposed strategy is evaluated through a fire rescue scenario, where a
team of simulated mobile robots need to extinguish all the detected fires and
save the individuals at risk, while having limited resources. The simulations
are implemented as a ROS-based multi agent system, and results show that the
proposed adaptation strategy provides a more stable performance than a static
collaboration policy.
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8.1 Introduction
Adaptive autonomy (AA) is the ability of agents to adapt autonomously their
behavior to continuously changing circumstances [1]. The implications of this
definition are twofold: (i) each agent decides itself on its autonomy levels,
and (ii) such decisions are taken continuously during execution. Furthermore,
to change autonomy levels means to change the dependence relations among
agents [2], e.g., an agent becomes less autonomous if it depends on the assis-
tance of other agents to complete its task.

This paper deals with the development of local reasoning mechanisms,
adapting the level of cooperation among agents based on several factors in
order to improve the overall performance. To this end, AA is modeled herein
through the willingness to interact [3], which allows agents to decide when
to give or ask for help. AA behavior is relevant in those scenarios in which
agents should be able to solve issues locally—especially when assistance from
human operators is not available, e.g., due to unreliable communication chan-
nels. One such application domain is Search and Rescue (SAR). In this paper, a
previously developed ROS-based agent simulation [4] has been extended with
a SAR scenario, and used to evaluate the adaptive autonomous behavior of a
group of agents in a software simulation. Nevertheless, the long-term goal is to
develop AA strategies that can be used both in real and artificial environments,
and for heterogeneous agents.

8.2 Background and Related Work
This section gives an overview of the SAR domain and autonomy models, and
it presents related work in multi-agent systems (MASs) coordination and co-
operation.

8.2.1 The SAR Domain

The SAR domain has served as a testbed for multi-robot and multi-agent re-
search in the past years. The RoboCup Rescue competitions have been estab-
lished since the 2000s [5], where researchers would validate their findings ei-
ther in simulation (Rescue Simulation League), or with real robotic platforms
(Rescue Robot League) [6]. The Rescue Simulation League is divided fur-
ther into the virtual and agent competitions. In regards to the virtual robot
competition, attempts are being made to provide interfaces to ROS (Robot Op-
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erating System) and Gazebo, due to the fact that the latter allow for better
code-sharing among the community [7]. Kleiner et al. proposed the RMas-
Bench [8], that could serve as a benchmark for coordination algorithms such as
distributed constraint optimization problems (DCOP), whilst hiding low level
details. Task allocation is usually expressed as the problem of assigning tasks
to agents while also minimizing some cost function [9, 10]. The problem ad-
dressed in the present paper relates to how agents should interact with each
other, i.e., when they should ask or give help based on their state, at any point
in time. In particular, the ROS-based adaptive autonomous agent simulation
developed in [4] was extended with the implementation of a SAR scenario.

Autonomy has been studied extensively in the literature, albeit there is no
unified theory or general framework yet. Several autonomy changing schemes
such as adaptive autonomy, adjustable autonomy, and mixed-initiative inter-
action, have been compared in the context of the coordination of large-scale
teams of robots in a simulated Wilderness Search and Rescue (WiSAR) [11].
Agents with adaptive autonomy attempt at all times to keep the higher levels of
autonomy. Furthermore, they do not go to the lowest level, in which the opera-
tor makes all the decisions. In the case of adjustable autonomy, the operator de-
cides on the different levels of autonomy of agents. Whereas, mixed-initiative
interaction allows both human and agent to make decisions on autonomy lev-
els based on the circumstances. In these conditions, the third scheme yields
the best results in terms of individuals found. Another approach uses a WiSAR
scenario to evaluate the benefits of sliding autonomy in producing better paths
(compared to two other methods that do not employ changes in autonomy),
whilst not increasing the workload of the human operator [12].

In [13], a fire-fighter scenario is adopted in order to evaluate the reasoning
mechanisms that allow fire-fighter agents to change their autonomy based on
circumstances. Agent reasoning is based on two heuristic rules: (i) the more
urgent a task becomes, the higher its priority, e.g., if the agent’s health is run-
ning low then the task of taking a rest becomes more urgent as time passes, (ii)
dedication to the organization, i.e., if the agent takes wrong information from
the operator then it will take more initiative on its own.

8.2.2 Agent Cooperation and Coordination

Cooperation and coordination in MASs has been studied in other contexts that
do not necessarily focus on the autonomy aspect. Theoretical approaches are
concerned with providing taxonomies and definitions that set apart concepts
such as cooperation, coordination, and collaboration [14] [15]. Recent years
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have also seen a rise of interest in what are called open MAS (parts of the sys-
tem come from competing third parties) [16] and pervasive systems (embedded
sensors, actuators, etc.) modeled as MASs [17]. Surveys in the area have iden-
tified the following classes: stigmergy, chemical, physical, biochemical, field-
based, and swarms [17, 18]. Attention has also been paid to design patterns
that target the interaction among components in self-adaptive systems [19],
among which the stigmergy pattern (interaction through the mediation of the
environment), centralized pattern, and peer to peer pattern. Others propose
a framework in which specifications related to permissions and obligations
among agents are adjusted at run-time [16]. Earlier works use a central co-
ordinator, e.g., Kaa [20], which approves or rejects changes in permissions
suggested by agents, and refers to an operator in case a decision is not reached.
It is assumed that when such permissions change, so does the autonomy of
agents.

8.3 The Adaptation Strategy
In this Section, the agent model proposed in [3], is revised, and the proposed
adaptation strategy for AA is described.

8.3.1 The Agent Model

An agent is defined as a computer system that perceives and acts in its en-
vironment through its sensors and actuators respectively, and is capable of
autonomous action [21]. Physical agents in addition to the previous charac-
teristics, are able to manipulate the physical world through their effectors (e.g.,
legs, wheels, or manipulators). Any such agent needs to possess the necessary
skills, abilities, knowledge, and resources to perform a particular task [22].
Moreover, an agent’s operation is limited by its available resources, such as the
battery level (e.g., for a robot), the allowed power consumption, or the available
computational resources (e.g., for a software agent). Therefore, the agent can
be described in terms of its (i) battery level, (ii) equipment (sensors, motors,
manipulators, and actuators), (iii) skill/ability set, and (iv) knowledge. The
agent’s knowledge can refer to what the agent knows about itself, other agents,
and the environment.

The agent model adopted in this paper is a finite-state machine, shown in
Figure 8.1. The agent has five states: idle, execute, interact, out of order and
regenerate. All agents start their operation in the idle state. In this state, a
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idlestart

execute interact out of order

regenerate

Figure 8.1: The proposed agent model composed of five states [3].

task can be generated. Consequently, the agent will switch to execute, where
either it executes its task, or it can decide to interact with other agents asking
for assistance. When the task is completed, the agent returns to idle. When an
agent receives a request from another agent, it will switch to interact, where
it will decide to accept or discard it. In the former case, the agent will put its
current task, if any, back into a FIFO queue, and start the new task. Otherwise
it will return to its previous state, either idle or execute. It is assumed that these
queues are infinite long. Moreover, any agent cannot execute more than one
task at the same time. When the energy level of an agent is low, it will switch to
out of order, and soon after to regenerate, during which the recharging process
takes place. If regenerate is successful, the agent goes to idle, and continues its
normal operation. If regenerate fails, it will go to out of order. In the current
setting, the agent is always assumed to regenerate successfully.

8.3.2 Willingness to Interact

Adaptive autonomous behavior is modeled through the willingness to interact,
composed of two components referred to as the willingness to ask for, and
give help [3]. The willingness to ask for help represents the likelihood with
which an agent will ask another agent for help during the execution of a task
(execute state). Whereas, the willingness to give help represents the likelihood
with which an agent will provide help upon a request from another agent (in-
teract state). In this paper, the goal of the agent is to decrease the disposition of
asking for help and increase the disposition of giving help, when possible, pro-
moting the cooperation among agents, assuming that cooperation can improve
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the performance of the MAS [23].
An agent computes the willingness to ask for help at time t, γt ∈ [0,1], by

applying a correction to its initial value, as

γt = sat(γ0 +ut), (8.1)

where, sat(x) := min(max(x,0),1), and ut is the adaptive correction at time t,
computed as

ut =
n

∑
i=1

φi f iγ
t , (8.2)

where n is the number of factors, φi, i = 1, . . . ,n, are weights (constant or cal-
culated at runtime), such that φi ∈ [0,1], ∑n

i=1 φi = 1, and f iγ
t , are the considered

factors at time t.
An agent computes the willingness to give help at time t, δt ∈ [0,1], by

applying a correction to its initial value, as

δt = sat(δ0 + vt). (8.3)

The correction vt integrates the effect of several factors, and it is computed as

vt =
n

∑
i=1

ζi f iδ
t (8.4)

where n is the number of factors, ζi, i= 1, . . . ,n, are weights (constant or calcu-
lated during runtime), such that ζi ∈ [0,1], ∑n

i=1 ζi = 1, and f iδ
t are the consid-

ered factors at time t. In the following paragraphs, the time subscript is omitted
for the sake of simplicity.

The k-th factor f k∗ is updated at every iteration based on the current mea-
surements ψk of relevant quantities, e.g., the battery level of the agent, the
accuracy of the agent in carrying out a specific task, etc, and on a minimal ac-
ceptable value ψk min. The update rules for the willingness to give and ask for
help are the following:

f kγ =

{
ψk min−ψk, ψk > ψk min

(1−α)(ψk min−ψk)+α, ψk ≤ ψk min
(8.5)

f kδ =

{
β(ψk−ψk min) ψk > ψk min

β(1−α)(ψk−ψk min)−α, ψk ≤ ψk min
(8.6)

where α ∈ {0,1} and β ∈ {−1,1} are control parameters, and influence the
calculation of different factors based on the desired behavior. In general f k∗ ∈
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[−1,1]. When f kγ → 1, the likelihood of asking for help is high, while when
f kγ→−1 the likelihood of asking for help is low. Analogously, when f kδ→ 1,
the likelihood of giving help is high, while when f kδ →−1 the likelihood of
giving help is low. Note that, f k∗ does not necessarily dominate all the other
factors. As a result, ai might still decide to ask for or give help when the
threshold is exceeded.

The main rationale of (8.5) and (8.6) is that the factors should be adjusted
proportionally to the distance between the current measurement ψk and the
threshold value ψk min. In particular, when ψk ≥ ψk min, agent ai does not need
help to complete its task, so it will decrease the likelihood of asking for help,
while, at the same time, it will increase its willingness to give help to other
agents.

In order for any factor to dominate all the factors ( f k∗) given certain con-
ditions, the corresponding weights φi in (8.2), or the corresponding weights ζi
in (8.4), should be set to 1. Since ∑n

i=1 φi = 1 and ∑n
i=1 ζi = 1, the weights for

all other factors are set to zero. If two or more of the factors f k∗ is equal to
one, then the weight of one of them is set to one, whilst all others are set to
zero. When no factor is equal to one, weights for all factors are all equal and
calculated as φi = 1/n and ζi = 1/n.

8.3.3 Factor description
In order to calculate the corrections u and v, nine factors (n = 9) have been
identified in [3] as relevant in the process of deciding when to ask and give
help during runtime. All the factors follow the update rules (8.5) and (8.6).

The battery factor f 1∗ is the amount by which agent ai’s battery level
ψ1 = b ∈ [0,1] will affect its willingness to interact. f 1∗ is computed with
ψ1min = bmin + bτ j , where bmin ∈ [0,1] is the minimum battery threshold for
which ai can operate in the execute state, bτ j ∈ [0,1] is the amount of energy
required by the task τ j, α = 1, and β = 1.

The knowledge factor f 2∗ is the amount by which the agent’s confidence
on its knowledge level ψ2 ∈ [0,1] will affect its willingness to interact. f 2∗ is
computed with ψ2min = 0, α = 1, and β = 1.

The skill/ability factor f 3∗ is the amount by which the agent’s skill effi-
ciency level ψ3 ∈ [0,1] in performing a task will affect its willingness to inter-
act. f 3∗ is computed with ψ3min = 0, and α = 1.

The equipment factor f 4∗ is the amount by which the agent’s equipment
accuracy level ψ4 ∈ [0,1] for performing a task will affect its willingness to
interact. f 4∗ is computed with ψ4min = 0, α = 1, and β = 1.



8.4 Simulation setup 79

The resource factor f 5∗ is the amount by which the agent’s resource qual-
ity level ψ5 ∈ [0,1], i.e., how much the type of tools in the agent’s possession fit
the task to be performed, will affect its willingness to interact. f 5∗ is computed
with ψ5min = 0, α = 1, and β = 1.

The performance factor f 6∗ is the amount by which the agent’s current
performance level ψ6 ∈ [0,1] will affect its willingness to interact. Performance
is a general indicator of how well an agent’s outcome is with respect to the tasks
attempted in the past. f 6∗ is computed with ψ6min ∈ [0,1), α = 0, and β = 1.

f 7γ is the task progress factor, covers the progress towards completion
ψ′7 ∈ [0,1] of the current task, while f 7δ is the task trade-off factor, and it
covers the trade-off ψ7′′ ∈ [0,1] between a task τ j currently in execution, and a
new task proposed by another agent τ′j. The two factors are computed as (8.5)
and (8.6), with ψ7min ∈ [0,1), α = 0, and β = 1.

The environment factor f 8∗ is the amount by which the agent’s likelihood
of succeeding in its environment ψ8 ∈ [0,1] will affect its willingness to in-
teract. This likelihood could be estimated based on the difficulties an agent
perceives in its environment, e.g., obstacles, harsh conditions and so on. f 8∗ is
computed with ψ8min ∈ [0,1), the acceptable level for this likelihood, α = 0,
and β = 1.

The collaboration factor f 9∗ is the amount by which the agent’s estimated
likelihood of a successful collaboration with another ψ9 ∈ [0,1] will affect its
willingness to interact. f 9∗ is computed with ψ9min ∈ [0,1), the acceptable
level of such likelihood, α = 0, and β = −1, through equation (8.6). It can be
observed that this factor affects the willingness to give and ask for help in the
same way.

In this paper, only factors f 1−5γ are considered to be dominant, because
it is assumed that in case either battery, abilities, equipment, knowledge, or
tools are not adequate then the agent should not attempt the task autonomously.
Moreover, it is assumed that the agent is able to estimate the different factors.

8.4 Simulation setup

The following paragraphs describe the implementation of the SAR scenario,
and the implementation of the agent model. ROS [24] has been used as the un-
derlying communication middleware. The agents and environment are imple-
mented as ROS nodes (executables), and communicate with each other through
the ROS middleware.
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8.4.1 Scenario instantiation

The environment is a 2D space with a specific width gridw = 30 and height
gridh = 30, and is generated at the beginning of a simulation. Agents can
move in this space, from a point A to a point B, according to the shortest Eu-
clidean path between two points. Obstacles and collisions are not considered
because they are not crucial to the level of interactions discussed here. In this
space, a fixed number of fires (n f = 40) is generated at random locations (x,y),
with the same intensities I ∈ {75,100} (the value of the intensities depends
on the difficulty of the simulation). The intensities are kept fixed in time for
simplicity. After a fire is extinguished, the trapped individuals (who lie at the
same location as fires) become visible and can thereafter be saved. The num-
ber of these individuals at a particular location is the same for each location,
nv ∈ {15,20} (depending on the difficulty of the simulation). Moreover, two
base stations, one for fire brigades and one for ambulances, are initiated at two
random locations in the grid.

The environment node publishes continuously the current state of fire inten-
sities, fire status (active/inactive), number of trapped individuals, and location
in the grid. Fire extinguishing, and individual extraction is simulated by having
the appropriate agent make a ROS service call to the environment node. As a
result, the corresponding variable (fire intensity or number of trapped individ-
uals) will decrease by a predefined step = 1.

8.4.2 Agent instantiation

Agents are implemented as ROS nodes. Their interactions with each other
are realized through the ROS publish/subscribe mechanism (for broadcasting),
and action server mechanism (for one to one calls). There are three types of
agents: fire brigades, ambulances, and police. Fire brigade agents put out fire.
Ambulances extract and carry individuals to safety. Police agents detect the
fires/victims within their range, and broadcast this message to the others. They
all broadcast their identity and abilities (e.g., fire extinguishing and transporta-
tion), as a result they are known to one another.

Throughout the whole the simulation, agents perform continuous Levy
walks in the generated 2D space, when in the idle state. The Levy walk al-
gorithm was implemented as it has been considered an efficient strategy for
search algorithms independent of the target distribution [25]. During these
walks, agents publish their location to the environment node, and are able
to detect fires/individuals if they are within a specified Euclidean distance
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(dv = 10%× gridw = 10%× gridh = 3). Trapped individuals are not visible
as long as the status of a fire is active. Fire brigade agents can also be noti-
fied by police agents about the existence of a fire, as a result their information
is not restricted to what is in their range of visibility at a particular time. If
there are visible fires, a fire brigade agent will generate a corresponding task
for extinguishing it. The task will have as many iterations as the fire inten-
sity. If more than one fire location is visible, then one is chosen randomly and
pursued. Similarly, if there are visible trapped individuals, ambulance agents
will pick one randomly and generate a corresponding task with the number of
iterations being equal to the number of individuals. When a task is generated,
agents will walk to the location of interest. They are assumed not to need help
for reaching any location in the 2D space. No initial plan, or explicit global
coordination is assumed. Nevertheless, it might happen that several agents go
for the same fire, or individuals to extract. When an agent decides to ask for
help, it will ask the appropriate agents it knows one by one, until either a task
succeeds, or the list of agents to ask is exhausted. Furthermore, an agent that
is already waiting upon another for a task, will discard on the spot any help
requests it receives. This is to ensure that agents do not wait on one another
pointlessly.

Each agent starts at the same level of battery, at ψ1 = 1, corresponding
to the maximum available energy of each agent. During task execution, the
agent’s energy level is decreased with a certain level, in each iteration step.
Also, when an agent moves to the location of interest, its energy level is re-
duced proportionally to the covered distance. There is a low threshold bmin =
0.3 under which the agent will go to out of order and thereafter recharge.
Agents are assumed to have the necessary knowledge for performing tasks,
with knowledge ψ2 = 1. The same assumptions hold for abilities (ψ3 = 1), and
equipment (ψ4 = 1). Initially, agents have the necessary resources depending
on their function, i.e., fire brigades have water rw = 25 units of water, whereas
ambulances have space for rs = 5 individuals inside their vehicle. When the
agent has enough resources to extinguish the fire or to carry an individual, the
respective resource factor will be ψ5 = 1, and it will be ψ5 = 0 otherwise.
During the run of each task, these resources decrease according to their us-
age. After that a task is completed, each agent will move to its corresponding
base station and reset its own resources. Agents are assumed to be able of esti-
mating: environmental risk, potential collaborator risk, their own performance,
progress of their current task, and task trade-off between two tasks. In these
simulations, the likelihood of success in the environment is kept constant for
simplicity. The likelihood of success with a potential collaborator is estimated
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Figure 8.2: PDFs of the results for the % saved and % fires metrics, in SC1–2.

based on the the percentage of past successful interactions. Agents calculate
their performance through ψ6 = tc/ttot, where tc is the number of completed
tasks, and ttot is the total number of attempted tasks. Task progress is calcu-
lated by itc/ittot, where itc is number of iterations completed, and ittot is the total
number of iterations. Finally, the task trade-off for two tasks τ1 and τ2 is calcu-
lated through R2−R1/R2+R1, where R1 and R2 are the respective rewards. Finally,
the thresholds for these factors are set to 0 for simplicity, thus ψ2−8min = 0.

8.5 Results
The hypothesis, evaluated through simulations, is formulated as follows: “Ag-
ents with adaptive autonomy perform better than agents that do not display
such behavior, in the context of a simulated search and rescue scenario”. Per-
formance is assessed across several metrics (Section 8.5.1). There are two
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Figure 8.3: PDFs of the results for the task per return and % dependent metrics, in
SC1–2.

modes of execution for any of the simulation runs, (i) static mode, in which
the components of the willingness to interact are set in the beginning, do not
change during runtime, and are independent of factors, and (ii) dynamic mode,
in which the components of the willingness to interact change during runtime
(every update is done against the same initial value specified for each compo-
nent) based on factors. For both modes, the same couples 〈δ0,γ0〉 for the com-
ponents of the willingness to interact is used. In the evaluation, the following
couples are considered: 〈0.5,0.0〉, 〈1.0,0.0〉, 〈0.5,0.2〉, 〈0.8,0.2〉, 〈0.5,0.5〉,
〈0.8,0.5〉, 〈1.0,0.5〉, and a random configuration. In the first seven configu-
rations, each agent in the population is initialized with the same willingness
to interact. Whereas, in the random configuration, each agent is initialized
with different random values for δ0 and γ0. Furthermore, simulations, for each
configuration and both modes, are run across two scenarios which differ in dif-
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ficulty (the random values for the willingness to interact are the same within a
scenario, but differ across scenarios). Difficulty is defined as the ratio between
the required resources on each site (w ∈ {75,100} and s ∈ {15,20}) and the
agent’s initial resources (rw = 25 or rs = 5). All simulations were ran on a
system with 24 cores, 8GB RAM, with Ubuntu 14.04 LTS operating system,
and ROS Indigo1.

8.5.1 Evaluation metrics

The quality of the obtained results is evaluated according to four metrics, as
follows: (i) percentage of individuals saved in the simulation with respect to
the total number of trapped individuals (% saved), (ii) percentage of fires ex-
tinguished in the simulation with respect to the total number of fires distributed
in the 2D space (% fires), (iii) number of completed tasks per return to the base
(task per return), (iv) percentage of dependent completed tasks with respect
to all dependent tasks attempted (% dependent). A task is dependent when an
agent needs assistance for its completion. The results are averaged over the
whole population of agents and over the number of repetitions (30), for each
simulation instance, i.e., for any combination of scenario difficulty and initial
configuration of the willingness to interact.

8.5.2 Numerical results

Simulation results are displayed in Figures 8.2 and 8.3 as probability density
functions (PDFs) obtained with 30 different runs of the considered scenarios.
Each figure contains the outcomes with respect to one of the metrics, across
the two difficulty scenarios (SC). Each sub-figure contains the outcomes for
the eight initial configurations and the two modes of execution (the static and
dynamic strategies). The red and magenta lines refer to the static case (indi-
cated with ‘s’ in the legend), while the blue and black lines refer to the dynamic
strategy (indicated with ‘d’ in the legend).

Regarding the percentage of saved individuals, in both difficulty scenarios,
all dynamic agents and static agents with γ0 ∈ {0.0,0.2} manage to save all
individuals within the allotted time (Figures 8.2a-8.2b). Whereas, for static
agents with γ0 = 0.5 is nearly 0, and for the random configuration on aver-
age 20%. Similar considerations apply for the percentage of extinguished fires

1The source code used in producing the results displayed in this paper is publicly available at
https://github.com/gitting-around/gitagent-sar.git.

https://github.com/gitting-around/gitagent-sar.git
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(Figures 8.2c-8.2d). This is to be expected, because if by the time the simu-
lation ends, only half of the fires have been extinguished then only half of the
individuals could have been saved.

Dynamic agents achieve higher percentage of completed tasks with respect
to returns to the base, (Figures 8.3a-8.3b). In SC1–2, all the static agents per-
form worse than the dynamic counterparts. Nevertheless, among static agents,
the ones with γ0 = 0.0 achieve better results than others. Whereas in the dy-
namic mode, the random configuration seems to produce slightly worse results
than the other configurations. The results are consistent across the two scenar-
ios.

Dynamic agents perform noticeably better as compared to their static coun-
terparts with respect to the percentage of completed dependent tasks (Fig-
ures 8.3c-8.3d). The outcomes are stable among different configurations and
scenarios, with the dynamic random configuration always performing slightly
worse than others (especially visible in SC2). In the static mode, better results
are obtained for configurations where γ0 = 0.2. These results agree with previ-
ous work [4], which shows that when agents need to depend on each other all
the time, and are highly likely to give help, the performance of the system will
degrade.

8.6 Conclusion

The obtained results indicate that adaptive autonomous behavior can positively
impact the performance of a population agents, in a context of a SAR scenario.
Performance is assessed with respect to four metrics: percentage of individuals
saved, percentage of fires extinguished, percentage of completed tasks with re-
spect to the returns to base, percentage of completed dependent tasks. Among
the two difficulty scenarios, the adaptive autonomous agents maintain a stable
behavior, seemingly independent of the initial configuration. Whereas, static
agents are quite dependent on the initial configuration. The results displayed
in the paper can have a dependency on the platform used for the simulations.
In more powerful platforms, all agents can perform better overall, and in less
powerful ones, they are expected to have poorer performance overall, i.e., less
individuals saved and extinguished fires within the allotted time for the simu-
lation.

There are several directions for future work. Firstly, an agent reasons on
each iteration whether to ask for help. This is particularly penalizing in the
static case, where even with low willingness to ask for help on each iteration,
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most tasks end up being dependent tasks. Thus, the possibility that the agent
decides on whether to ask for help once in a couple of iterations, needs to be in-
vestigated. Secondly, an agent can accept to help another agent, even if it does
not fulfill energy, abilities, equipment, knowledge, or resource requirements.
Consequently, it will ask for help a third agent. It is needed to compare this
design choice, with the other option that involves the agent declining upfront
to help in such scenario. Finally, cues regarding the grade of dependencies
within the population can be used as an additional factor, allowing the agent to
regulate its own behavior from the global perspective as well.
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[4] Mirgita Frasheri, Baran Çürüklü, and Mikael Ekström. Comparison be-
tween static and dynamic willingness to interact in adaptive autonomous
agents. In ICAART, 2018.

[5] Satoshi Tadokoro et al. The robocup-rescue project: A robotic approach
to the disaster mitigation problem. In ICRA, volume 4, pages 4089–4094,
2000.
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Abstract

Multi-robot systems can be prone to failures during plan execution, depend-
ing on the harshness of the environment they are deployed in. As a conse-
quence, initially devised plans may no longer be feasible, and a re-planning
process needs to take place to re-allocate any pending tasks. Two main ap-
proaches emerge as possible solutions, a global re-planning technique using a
centralized planner that will redo the task allocation with the updated world
state information, or a decentralized approach that will focus on the local plan
reparation, i.e., the re-allocation of those tasks initially assigned to the failed
robots. The former approach produces an overall better solution, while the
latter is less computationally expensive. The goal of this paper is to exploit
the benefits of both approaches, while minimizing their drawbacks. To this
end, we propose a hybrid approach that combines a centralized planner with
decentralized multi-agent planning. In case of an agent failure, the local plan
reparation algorithm tries to repair the plan through agent negotiation. If it
fails to re-allocate all of the pending tasks, the global re-planning algorithm
is invoked, which re-allocates all unfinished tasks from all agents. The hybrid
approach was compared to planner approach, and it was shown that it improves
on the makespan of a mission in presence of different numbers of failures, as a
consequence of the local plan reparation algorithm.
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9.1 Introduction

Automated planning is the process of defining a set of actions for an autonomous
system to achieve a prescribed set of goals. The problem of automated plan-
ning has been a central research topic in artificial intelligence for the last
decades [1], and it has become particularly relevant in the context of Multi-
Agent Systems (MASs) [2].

Several approaches have been proposed to address the automated planning
problem, and they are divided into two major categories: centralized and dis-
tributed planning. While there are clear advantages of centralized algorithms
related to optimality of the computed plan with respect to an objective function,
the curse of dimensionality has been the main limitation of such approaches.
On the other hand, distributed algorithms provide a more robust alternative
towards faults [3, 4], safety [5, 6], and security [7, 8].

The trade-off between the optimality of centralized solutions, and the flex-
ibility and robustness to potential failures of distributed approaches is the main
focus of this paper. In addition, this trade-off is studied in the context of agent
or robot failures 2. When a failure occurs, the centralized approach will com-
pute a new plan based on the current conditions, referred to as re-planning,
whereas the decentralized approach will rely on self-organization, which al-
lows agents to perform a local plan reparation.

In this paper, a novel hybrid approach for multi-agent automated planning,
GLocal, is proposed. GLocal exploits the advantages of both approaches, i.e.,
optimality and robustness, while limiting their inherent disadvantages. In par-
ticular, this paper investigates what is the effect of failures in MAS automated
planning, and it shows the robustness of the proposed hybrid approach. When
a failure occurs, agents in the MAS attempt to repair the plan locally, by ne-
gotiating with one another over the assignment of the pending tasks, i.e., tasks
initially assigned to the failed agent. Agent collaboration is shaped by their
willingness to interact, which captures the utility of being assigned to a given
task. In case at least one task remains un-allocated, agents make a request to
the centralized global planner for a re-plan, and as a result they switch from a
local to a global strategy. More specifically, this paper focuses on the following
research questions (RQs)

RQ1 How does the number of replans from a centralized planner impact on
the overhead and quality of the solution of a MAS?

2In this paper, the terms agent and robot will be used interchangeably.
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RQ2 How can the agents minimize the number of calls to the planner by col-
laborating with one another?

These questions are addressed through computer simulations, where the GLo-
cal approach was compared to a planner-only approach, for different number of
failures, as well as sizes of problem instances. The results reveal that GLocal
produces solutions with shorter mission make-spans in the presence of failures,
as a consequence of reduced calls to the centralized global planner.

The rest of the paper is organized as follows. Section 9.2 describes the
background of the paper, and the problem addressed in this paper is presented
in Section 9.3. Section 9.4 describes the design of the MAS that controls the
behavior of the robots, while Section 9.5 presents the centralized global planner
for the agents. Section 9.6 describes the simulation setup, and Section 9.7
presents the experimental results. Finally, Section 9.8 discusses the related
work, and Section 9.9 concludes the paper.

9.2 Background
In real world applications, the operation of agents or robots can be disrupted by
environments changes, which occur regardless of the agent’s activities. Disrup-
tion can also occur due to unforeseen events such as faulty sensors or actuators,
thus making an agent incapable of performing certain tasks. Additionally, the
goals, toward which such agents are working for, can themselves be subject to
change. In order to cope in such complex situations, distributed and continual
planning approaches have been proposed, that (i) distribute the planning pro-
cess among a group of agents, and (ii) allow for planning to be an incremental
process that happens continuously during the operation of agents, as well as
(iii) combined approaches for distributed continual planning (DCP) [9]. Multi-
agent planning has been defined as the problem of creating a plan for and by
a group of agents [10]. Furthermore, five stages of MAP have been identified
such as goal allocation to agents, refinement of goals into sub-tasks, sub-task
scheduling by considering other constraints, communication of planning deci-
sions, and plan execution.

Depending on the perspective, distributed planning can refer to either coop-
erative distributed planning (CDP), also known as cooperative and distributed
multi-agent planning (MAP)3, or to negotiated distributed planning [11]. In

3A recent survey on cooperative and distributed MAP, referred to also as multi-agent coor-
dination of actions in decentralized systems, provides a taxonomy of existing approaches in the
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the former view, the goal is to create a global plan, whereas in the latter the
emphasis is on the agents ability to fulfil their own local objectives. While a
CDP focuses on issues as plan representation and generation, task allocation,
communication and coordination, in the scope of an NDP, the focus is on col-
laboration and cooperation between agents. Continual planning on the other
hand allows agents to revise their plans during operation as unforeseen events
occur. Examples include reactive planning systems, where an agent considers
only the next step and does not look ahead further in the future; and flexible
plan execution systems, which allow for some look ahead, and delay sketching
out the detailed plan as much as possible.

Centralized planning implies that decisions are not made independently
and locally, but rather holistically at a global level. Utilizing centralized plan-
ning to solve multi-agent planning problems is a widely accepted approach.
Landa-Torres et al. [12] used a centralized planner, based on the evolutionary
algorithms, to solve an underwater multi-agent mission planning problem for
a swarm of autonomous underwater vehicles. Similarly, the solution to the
problem of mission planning for a swarm of unmanned aerial vehicles was
presented by Ramirez-Atencia et al. [13]. The problem is modeled as a con-
straint satisfaction problem and solved using a multi-objective Genetic Algo-
rithm (GA). A different approach to a similar problem is taken by Karaman
Sertac et al. [14] where process algebra is used to model the problem that is
later solved with the GA.

This paper is concerned with the investigation of methods that combine
centralized and negotiated distributed planning approaches in order to optimize
the execution of plans in a failure prone context, simultaneously increasing the
robustness of the system by allowing agents to perform a local plan reparation
online.

9.3 Problem Formulation
The problem that is being addressed in this paper is a relaxed version of the
Extended Colored Traveling Salesperson Problem (ECTSP) [15]. The origi-
nal problem is simplified by the removal of the precedence constraints among
tasks.

Assume a set of n tasks, v ∈ V := {v1,v2, . . . ,vn}, m agents, s ∈ S :=
{s1,s2, . . . ,sm}, and k capabilities, c ∈ C := {c1,c2, . . . ,ck} where m,n,k ∈ N.

literature based how they deal with issues such as agent distribution, computational process, plan
synthesis schemes, communication mechanisms, heuristic search, and privacy preservation [2].
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Each agent s∈ S has a set of capabilities Cs ⊆ C assigned to it. Each task v∈V
requires one capability in order to be successfully completed. A capability ma-
trix of an agent s, As ∈ {0,1}n×n, can be defined as:

ai js =

{
1, fc(vi) ∈ Cs∧ fc(v j) ∈ Cs

0, otherwise,
(9.1)

Agents are allowed to move in a 2D space Z, that is represented as a con-
tinuous map, and are able to communicate with one another with broadcast,
without limitation in range.

The problem consists of allocating n tasks to m agents with respect to given
constraints in the form of agent capabilities and task requirements for such
capabilities in order to minimize the make-span of a mission.

Objective function The goal is to complete all the tasks in the environment
while minimizing mission’s duration, even in presence of one or more agent
failures. Agent failures may be due to a physical failure of the robot performing
a specific task, or of the equipment that is required to perform said task.

In MASs, a mission can involve optimization of many different parameters.
Commonly, mission duration is minimized, however, a duration of a mission
can be defined in various ways [16]. The objective function used in this work
tends to minimize the duration between the starting time of the first task and
end time of the last task over all agents in the mission. This objective function is
also known as “minMax”, as it minimizes the maximum duration of an agent’s
makespan over all agents.

9.4 Agent Design
The agent design consists of three core aspects, namely (i) the architecture
comprising of a finite state machine which captures the different behaviours
of an agent, (ii) the willingness to interact abstraction and its role in shaping
collaborative behaviour, and (iii) the interaction protocols used in any collabo-
ration.

9.4.1 Agent Architecture
Each agent is designed as a finite state machine composed of four states, idle,
interact, execute, interact & execute (Fig. 9.1), and starts its operation in idle.
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Figure 9.1: Agent operation state machine.

Agents in idle are not committed to any task. Note that, depending on the ap-
plication, other types of behaviours could be implemented in this state. Agents
are able to create tasks on their own, e.g., reaching an object location after de-
tecting its presence. Additionally, they are able to get a list of tasks by another
entity, e.g., a centralized planner; this is the case studied in this paper. When an
agent commits to performing a task, it switches to execute and proceeds with
the task execution. Once an agent completes all its tasks, it reverts back to the
idle state. As soon as a new task is detected or received, an agent, residing ei-
ther in idle or execute, switches to interact, or interact & execute, respectively.
Thereafter, a negotiation process is initiated with other agents in order to al-
locate every new task. The outcome of the negotiation is zero or more agents
assigned to perform each task. An agent with no assignment at the end of the
negotiation goes back to either idle or execute, respectively, i.e., the state it was
in before the negotiation round.

9.4.2 Willingness to Interact
The collaborative behaviour of an agent ai is determined by its willingness to
interact wi(t) ∈ [−1,1], i.e., the likelihood of asking and giving help to other
agents at time t. A positive willingness indicates that ai is able to help others
wi(t)> 0, whilst a negative willingness indicates that ai needs help performing
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its tasks wi(t)< 0, with wi(t) =−1 indicating that an agent must ask for help at
time t, and wi(t) = 0 denotes a neutral disposition. The willingness is affected
by both the state of an agent, which captures the general attitude towards po-
tential collaboration with others (explored in previous work [17]), and by the
properties of the specific task considered during any negotiation, namely the
utility of performing such task.

In this paper the focus is solely on how the utility of performing a particular
task τ j affects the willingness to interact (wi(t) = 0). Two factors are consid-
ered, the equipment required by τ j and the distance d to the task. The case
in which agent ai does not have the necessary equipment required by task τ j,
will reflect in a negative willingness to interact. It is possible to distinguish
two circumstances in which an agent ai considers the allocation of τ j, (i) ai has
no previous allocation, and (ii) ai is already allocated to a set of tasks. In case
(i), d is the distance between the agent’s location and τ j’s location, with utility
calculated as:

uτ j(t) = 1/d. (9.2)

In case (ii), d is the minimum distance to τ j considering the ai’s location, and
the location of the other tasks allocated to ai, given by:

d = min({dk j,∀k ∈ L}), (9.3)

where L is the set containing the locations of agent ai and its tasks, and dk j is
the distance between the kth element in L and task τ j. The final value of the
willingness to interact with respect to task τ j is expressed by

wiτ j(t) = wi(t)+uτ j(t). (9.4)

Although the willingness to interact is itself an expression of utility, in
this paper its notion and that of task utility are separated. This is done in
order to have a clear distinction between what affects the general disposition to
collaborate, and what affects the utility of a performing a single task.

9.4.3 Interaction Protocol
Several assumptions hold concerning the interaction between agents. Firstly,
no two agents can start the negotiation for a unique task at the same time.
Secondly, agents can have the knowledge of each other’s allocations, as well
as the tasks that are completed. Thirdly, this knowledge is not necessarily
available for every time-step, and can come to the knowledge of an agent with
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Figure 9.2: Interaction Protocol.

a certain delay. As a consequence of the last two assumptions it can happen
that a task is repeated more than once.

The interaction protocol defines how agents negotiate with one another over
the assignment of tasks which are to be completed (Fig. 9.2). Requests for help
can be initiated by any agent in the event of the detection of a full failure of
an agent 4. The first agent to detect the failure of another agent initiates a
negotiation with others to re-allocate the tasks of the failed agent. For each
task to be assigned, a request for help is broadcast. Afterwards, the responses
of other agents, consisting of the respective willingness and utility values, are
collected. Note that, replies from agents with negative willingness are ignored.
Thereafter, the rest of the responses are ordered based on the combined value
of willingness and utility, and the agent with the highest willingness will be
allocated to the task.

9.5 Centralized Global Planner
The process of mission planning first starts with the creation of a mission. This
is done by a human operator who defines the mission parameters (tasks to be
done, available vehicles and the overall goal of the mission) in the Mission
Management Tool (MMT) [15]. After this step, the mission is sent to the plan-
ner which solves the mission and produces the necessary set of actions (plan)

4Such detection mechanisms are outside the scope of this paper. Further details on the imple-
mentation are given in Section 9.6.
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for mission execution.
Algorithms used to solve this kind of problems are usually divided into

two groups, exact and meta-heuristic. While exact algorithms can guarantee
that the produced solution is optimal, meta-heuristics usually have no guaran-
tees at all. However, meta-heuristic algorithms can produce a reasonably good
solution within a short period of time. This is sometimes more important than
having an optimal plan, especially in situations where re-planning might be
necessary. Although the initial plan making is not bounded by time, the re-
planning is. Re-planning, in this case, can be seen as planning again with new
initial conditions. Since multi-agent missions are usually costly and autonomy
of agents is limited as well, the re-planning process should be very fast. For
that reason, the algorithm behind the global planner, in this paper, is a Genetic
Algorithm (GA), which is adapted to planning and scheduling problems. Chro-
mosomes are encoded in the same way as in [15], thus two arrays of integers,
representing the genes, are used. The first array consists of integers repre-
senting tasks and agents, whereas the second array represents task parameters
(equipment requirements, task duration, and location). Chromosome length
varies from n+ 1 to a maximum of n+m genes, depending on the number of
agents used in a mission.

The initial population is randomly created with the respect to given con-
straints, hence, initial candidate solutions are in the feasible region of the search
space.

The crossover operator has not been used since it did not have positive ef-
fects on the convergence process. Mutation is the only source of variability as
it allows genetic diversity in the population. Every individual has a low proba-
bility to be selected for mutation. In this paper, two types of mutation schemes
are introduced. One operates on the task genes through swapping tasks and
inserting new genes, whereas the other mutates agent genes through growing
(adding agents) and shrinking (removing agents) from the chromosome.

A task swap mutation swaps two task genes in a chromosome, meaning
that it can both swap tasks within a single agent or between two agents. An
insert mutation chooses a task and inserts it in a new location in a chromosome,
similarly to the previously explained mutation, the insertion can be within the
same agent or different one.

An agent shrink mutation removes one agent from a chromosome, reallo-
cating its tasks to other agents. Growth agent mutation adds a new agent to
the plan. The new agent gene is randomly inserted, acquiring tasks from that
location in the chromosome up to the next agent gene or end of the chromo-
some. If there are conflicting (a task not supported by assigned agent) tasks,
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Figure 9.3: Simulation components.

they are randomly reallocated to other agents. Both algorithms take into ac-
count given constraints ensuring that the mutation process does not produce
infeasible solutions.

9.6 Simulation Design
The combined approach consisting of the integration of a centralized planner
and decentralized agents was compared to the planner-only approach. Both
approaches were evaluated and compared in simulations. This section initially
provides a general description of the simulation design, followed by implemen-
tation details concerning each of the approaches separately.

9.6.1 Simulation Design
The agent simulation (Fig. 9.3) is built on top of the ROS (robot operating
system) middle-ware [18]. Agents, called nodes in ROS terminology, are of
two types, (i) operative agents described in Sect. 9.4, and (ii) special purpose
agents such as the clock and the environment agents.

Operative agents have the goal of completing the tasks which are part of the
mission. Agents are heterogeneous with respect to the set of capabilities they
have. In addition, more than one agent can have the same capability and one
agent can have more than one capability. Furthermore, they are homogeneous
with respect to the implemented motion model with a maximum velocity vmax
set to 10m/s. Their behaviour in the idle state, i.e., remaining stationary, is also
the same. Agents communicate with one another through the publish/subscribe
broadcast mechanism, and are able to listen to messages from each other, i.e.,
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without a limitation in range. When an agent makes a request, it will wait
until the first replies arrive or until a specified timeout of 5 seconds has passed.
Consequently, not all responses from all other operative agents are necessarily
considered. During the course of the simulation, any such operative agent can
experience a full failure (determined in the environment node), which means
that it has broken down and cannot do any task, or communicate with others.

The clock agent keeps track of the simulation time. After a simulation
is initiated, the clock starts ticking when a plan has arrived from the planner.
This is to ensure that across different runs of the simulations, the arrival time of
the plan is the same and deterministic. The clock tick count is increased by 1
time unit every time all non broken down operative agents and the environment
node have updated their state once. Also, it is assumed that any interaction
between operative agents happens within the same time-step, i.e., the clock
stops ticking when they are interacting, and resumes once the interaction has
finished. The communication with the clock agent is realized through ROS
one-to-one service calls.

The environment agent is used for three purposes: to keep track of infor-
mation that concerns all agents, to determine which agent will fail at a given
time-step, and as a locking mechanism. With respect to the first purpose, the
information collected by the environment consists of the locations of agents
and tasks in a 2D-space, as well as lists of allocated and completed tasks by
every operative agent. After the data is collected, it is broadcast as a whole –
through the ROS publish-subscribe mechanism – to all operative agents, with
the update taking place at every time-step. As a result, agents are aware of how
tasks are allocated, and which tasks are completed at every time-step. Delays
of a couple of time-steps might occur if some messages are lost or not received
in time.

The second purpose of the environment is to simulate both the failure of an
agent in the system, and the detection of such failure by other agents. Regard-
ing the former, the environment initially calculates the time-step t f in which to
inject the failure as follows:

t f = randint(0.2 ·mD,0.8 ·mD)+ trp, (9.5)

where the function randint generates a random integer that lies between
the two given arguments, mD is the estimated mission duration, and trp is the
time the previous re-plan has taken place, whether by the planner or the agents.
Additionally, the environment randomly selects an agent to fail from a list of
agents that are currently executing. Regarding the latter, after the occurrence
of a failure is simulated, the environment node informs all agents, one by one,
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Figure 9.4: Execution times for both planner and hybrid approach across problem in-
stances 1-3.

through ROS one-to-one service calls. Note that, if an operative agent com-
pletes a task at time t f , there is no time for such information to propagate to
the rest. As a result, such a task will be reallocated and its execution will be
repeated by another agent. The third purpose of the environment is to lock the
tasks and the invocation of the planner. This means that, (i) two agents will not
be able to initiate a negotiation for the same task at the same time-step, and (ii)
agents cannot contact the planner after a call has already been placed and be-
fore a new plan has been received. In the meantime, operative agents drop their
assigned tasks and change the state to idle. In order to lock, either the tasks or
calls to the planner, agents communicate with the environment through ROS
one-to-one service calls.

9.6.2 Simulation Scenarios

Every mission starts with a human operator defining a set of tasks to be ex-
ecuted in the MMT. After mission creation, it is forwarded to the automated
high-level planner described in the Sect. 9.5, where it is translated into ECTSP
model [15]. The result of the planning process is a plan that is then forwarded
to agents for execution. In both scenarios, the planner initiates the agent simu-
lation by sending a plan with tasks allocated to agents and other mission rele-
vant information such as the initial locations for agents and tasks, the required
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equipment, the task duration, and the physical capabilities and limitations of
involved agents.

The planner-only approach scenario In this approach, the planning and re-
planning is only performed by the centralized planner. After the initial plan is
generated, the planner goes into the idle state, waiting for re-planning requests,
whereas agents begin executing the assigned tasks. When a failure is detected,
the first agent that is able to lock the planner through the environment node, will
immediately issue a re-planning request. Noticeably, there is no collaboration
between operative agents. While waiting for the new plan, the clock node keeps
ticking and all agents switch to the idle state. When the new plan arrives, trp is
set to the current time tn. It is important to emphasize that failures are induced
in such a way that they cannot make a mission infeasible, i.e., the re-planning
process will always be able to produce a feasible plan.

The GA planner is configured as follows. The population size is fixed to
500, and the number of generations is limited to 5000. The crossover operator
was omitted, and the mutation probability is set to 10%, In addition, elitism is
set to 5% in order to preserve the best candidate solutions from the previous
generation.

The GLocal approach scenario In this approach, the planner and agent ap-
proaches are combined, i.e., agents are able to collaborate with one another
and re-allocate tasks in the case of a failure during mission execution. As in
the previous approach, after the initial plan, the planner goes to the idle state,
while the agents begin the execution of the assigned tasks. When a failure is
detected, all other operative agents compute the list of tasks Vx assigned to the
failed agent x, removing those tasks perceived as complete. Then, a negotiation
round begins for every task v∈Vx. The first agent that manages to lock the task
through the environment node, will initiate the corresponding re-allocation, by
sending out help requests to all other agents. An agent will wait for a maxi-
mum time of tw = 5 seconds 5 for any replies, or until the some replies have
arrived, i.e., if the list of replies is not empty when an agent makes the check,
then the waiting stops, and the agent proceeds with the negotiation using the
list of replies available at that moment. Thereafter, it will order the replies in
descending order of the willingness to interact value, and will assign the task

5Note that, the length of the timeout is chosen arbitrarily. Depending on the needs of the
application, a shorter or longer timeout could be selected. It is assumed that for the purposes of
this paper tw = 5 seconds is an adequate upper bound.
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to the agent that has the highest value. In case the agent has the necessary
equipment for completing the task, then it will itself be part of the candidates
that could be assigned to the task. In case such negotiation fails, e.g., the agent
does not get any positive replies, and if the agent itself is not capable of per-
forming the task, then a re-planning request will be issued. This request will
invoke the centralized planner with the updated world state information. Note
that, one failed negotiation is sufficient for triggering a call to the centralized
planner. On the other hand, if agents manage to re-allocate all the tasks by
themselves, the planner is not engaged. In case the planner is called after an
agent failure, then trp is set to the time of the arrival of the new plan. Otherwise,
trp is calculated as t f +3, as it is assumed that most agents will have received
such information within the 3 time-steps. A re-allocation that happens as a re-
sult of the negotiation between agents takes place within a t f time-step. Three
more extra time-steps are added to give enough time to agents to propagate the
new information pertaining the newly allocated tasks, before a new failure is
introduced.

9.7 Results

The results of the comparison of the two aforementioned approaches are pre-
sented in this section. In order to gain an insight into the differences between
the approaches, a series of statistical tests were conducted. We formulate the
null hypothesis as “A hybrid approach that combines a centralized and de-
centralized planner has no significant effect to the overall results compared to
a centralized planner-only approach.” The data used for the comparison
consist of execution times per each of 30 runs for every test case. The sample
data has no normal distribution, i.e., data can be highly skewed and can have
extended tail. This is the reason why the median value was chosen over the
mean value and consequently the non-parametric Wilcoxon rank sum test is
used. The results of the test are shown in the Table 9.1. Based on the results
we can reject the null hypothesis since it is clear that the hybrid approach per-
forms better with statistical significance. The agent only approach has been
omitted from this comparison since it is generally accepted that decentralized
planning results in worse sub-optimal plans compared to centralized planning
in failure-free, non time-critical scenarios. This applies to the production of
the initial plan in presented scenarios.
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Benchmark Settings There are four benchmark settings which differ on the
number of agent failures f that can happen in the system, f ∈ {0,1,2,3}.
Each settings has 3 different problem instances varying in the number of tasks
nT ∈ {50,100,150} , where nA is the number of agents. In total 36 distinct
simulations are run. The number of repetitions for each case is nR = 30. The
number of agents in the system is fixed to nA = 10. A failure cannot make the
completion of the mission infeasible, i.e., there will always be at least one non-
broken agent with the necessary equipment needed by any task. Additionally,
the simulations run until all tasks have been completed. Therefore, all tasks
will eventually be completed by the agents.

Scenario Comparison The average execution times across the different num-
ber of failures, task instances, and the two approaches are given in Fig. 9.4.
It can be observed that with the increase of the number of failures, the mis-
sion makespan increases as well in the planner-only approach. Whereas in
the hybrid approach, due to the plan reparation performed by the agents, the
makespan is on average lower than in the planner approach. Additionally, as
the size of the problem instance increases, the average disparity between the
two approaches also increases in most cases. Similarly, as the number of the
failures increases in a problem instance, the p-value decreases (Tab. 9.1). The
distribution of the execution times for each of the test cases can be seen in
Fig. 9.5. The dashed lines represent median values. It can be observed that the
median value of the hybrid approach is always better (in this measure lower is
better) than the median value of the planner-only approach. Although, some of
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the solutions overlap, it is clear that the hybrid approach, in general, produces
better solutions than the planner-only approach.

For the hybrid approach, the cumulative number of re-plans by the plan-
ner and the agents for each failure case across the three problem instances is
calculated, and given in Fig. 9.6. Note that the total number of re-plans in a
simulation run is equal to the number of failures f . As a result, the total num-
ber of re-plans can be calculated as f · nR = {0,30,60,90}. Additionally, by
inspecting Figs. 9.4 and 9.6, it is possible to note the influence of the number
of times agents locally repair the plan over the execution times. In problem
instance 1, failure case f = 1, agents do not invoke the planner 67% of the
time a re-plan is needed (Fig. 9.6), thus impacting the variability of the execu-
tion times, which partly overlaps the results gained with the planner-only (Fig.
9.4). It can be noted that, depending on the problem instance, when a re-plan
is needed the local plan reparation technique, involving only agents, is able to
overcome the failure in the system and re-allocate tasks from the failed agent
in 67–88% of the cases.

9.8 Related Work

To the best of authors’ knowledge, only two works aim at addressing the prob-
lem of combining centralized and decentralized planning approaches in order
to solve multi-robot task allocation problems. Le Pape has argued for the ne-
cessity of combining centralized and decentralized planning approaches to deal
with uncertainties and unforeseeable events in dynamic environments [20].
Agents were given the option to create their own individual plans in a decen-
tralized way. However, in the case of addition of new tasks into the system,
e.g., as a result of the action taken by a human operator, agents invoke the cen-
tralized planner to make the task allocation of newly added tasks. Thereafter,
agents proceed with the execution of the tasks. Duan et al. consider the online
dispatching problem for dynamic autonomous taxi operations, the aim of which
is to assign requests to the taxis in the system, while maintaining the feasibility
of existing routes [21]. Requests can arrive at any time, and the time aspect is
divided into short-term and long-term horizons. An immediate request is part
of the short-term horizon, and is dealt with by a centralized planner that makes
the assignment. Reservation requests, on the other hand, belong to the long-
term horizon, and are dealt with by the autonomous taxis. In this approach,
the taxis integrate these requests such that their routes remain feasible, until
they are part of the short-term horizon and the planner makes the assignment.
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Their goal is to reduce the planner workload from requests that are too far in
the future.

A more detailed comparison, from the problem definition viewpoint, is pro-
vided by expressing the problems addressed in related works, as well as the
problem tackled in this paper, through the TAMER model proposed by Milo-
radović et al. [19] (Tab. 9.2). TAMER is an entity relationship model that
characterizes multi-robot allocation problems through four entities – Robot,
Environment, Mission, Task and the relationships between these entities such
as teamed (Team.), communicate with (Comm. with), deployed (Depl.), in-
cludes robots (Incl. R.), includes tasks (Incl. T.), allocation (Alloc.), depend
on (Dep. on), and decomposed off (Dec. off) 6 Teamed and Communicate with
capture the relationship between instances of the Robot entity, in terms of how
robots collaborate with one another, and lower level concerns for communica-
tion, e.g., bandwidth, range etc. A Mission instance is deployed in an instance
of Environment. Additionally, a Mission includes a set of Robot and Task en-
tities. Task entities are connected with one another through the depend on and
decomposed off relationships. Finally, the Robot, Task, and Mission entities
are linked through the allocation relationship that captures properties such as
the allocation type (instantaneous assignment versus time-extended) and utility
function.

9.9 Conclusion
In this work, a hybrid approach for multi-agent mission re-planning is pro-
posed. This approach combines high-level global planning realized by a cen-
tralized planner, with a local plan reparation technique carried out in a de-
centralized manner by a group of agents. In the event of full failures, i.e.,
agent breakdowns, the remaining agents attempt to repair the plan locally by
re-allocating any pending tasks among each other. If at least one task remains
un-allocated, agents invoke a centralized planner which generates a new plan,
for all agents and unfinished tasks, based on the updated information received
from the agents. The hybrid approach is compared to a planner-only approach
in simulations, and it is shown that on average it achieved better results, i.e.,
shorter mission make-span as compared to the latter, in the presence of differ-
ent numbers of failures.

There are three lines of inquiry for future work. First, it is of interest to

6The act relationship binding the Robot and Environment entities has been omitted from Ta-
ble 9.2, due to no specification in the given works.
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investigate the performance of the hybrid approach in the presence of partial
failures of agents. A partial failure could mean a faulty equipment for an agent
that prevents the execution of some of the tasks allocated to the agent. Sec-
ond, the proposed approach – with additional local strategies by agents for an
efficient local re-planning – can be applied to solve the Extended Colored Trav-
eling Salesperson Problem (ECTSP), with precedence and/or synchronization
constraints among others. Finally, different strategies for determining the re-
planning threshold, i.e., when to call the planner, are to be investigated.
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Abstract

When multiple robots are required to collaborate in order to accomplish a spe-
cific task, they need to be coordinated in order to operate efficiently. To allow
for scalability and robustness, we propose a novel distributed approach per-
formed by autonomous robots based on their willingness to interact with each
other. This willingness, based on their individual state, is used to inform a
decision process of whether or not to interact with other robots within the en-
vironment. We study this new mechanism to form coalitions in the on-line
multi-object κ-coverage problem, and compare it with six other methods from
the literature. We investigate the trade-off between the number of robots avail-
able and the number of potential targets in the environment. We show that
the proposed method is able to provide comparable performance to the best
method in the case of static targets, and to achieve a higher level of coverage
with respect to the other methods in the case of mobile targets.
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10.1 Introduction

Robots collaborating with each other in order to tackle a task perform faster
and more efficiently than their individually operating counterpart. Some tasks
even require collaboration of multiple robots and cannot be accomplished by
individual robots at all. However, such collaboration requires coordination of
the individual robots, and formation of coalitions between them. Numerous
coalition formation approaches have been proposed which either rely on cen-
tral components [1–3] or focus on a single task to be accomplished [4] in order
to achieve meaningful interaction and collaboration. These approaches require
dissipation of information about available coalitions as well as negotiations
about participation of each potential coalition member [3–5]. While coalitions
are usually formed around single tasks, the use of multiple teams has been
shown to be beneficial when pursuing goals that require multiple tasks to be
accomplished concurrently [6, 7]. Moreover, when considering autonomously
operating robots that aim to achieve multiple tasks, the individuals have to
make decisions on when and how to form coalitions, and to what end the coali-
tion is formed.

In this work, we are interested in the ability of autonomously operating
robots to interact and collaborate in order to provision varying sets of tasks
efficiently, without a central component involved. We propose an approach
where each robot makes individual decisions about whether or not to provision
a specific task, employing local information about its own status, e.g., its bat-
tery level, its ability, and its interest (i.e., expected performance value the robot
contributes to the collective) in performing such task. More specifically, we
propose a novel distributed coalition formation and study this approach in the
online multi-object κ-coverage problem [8, 9], which is related to the coopera-
tive multi-robot observation of multiple moving targets (CMOMMT) problem
proposed by Parker and Emmons [10], and consists of a varying number of
tasks required to be tackled concurrently.

First, the robots need to discover initially unknown moving objects in the
environment. They do not possess any a priori information about the number
or location of these objects. Furthermore, objects may be mobile, requiring
robots to change their own location respectively in order to continuously pro-
vision them. Second, each object needs to be provisioned with at least κ robots
concurrently, i.e., κ robots having the object within their sensing/actuating re-
gion at the same time. Here, detecting new targets is considered the first task,
however, every newly discovered target generates a new task for the collective
of covering this known target. This generates a trade-off between detecting new
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objects and covering known objects with κ robots when the collective tries to
maximize the duration and number of targets covered by κ robots. However,
a robot not only needs to decide between provisioning a specific target or ex-
ploring the area to discover new targets, but also which of the different known
targets it wants to provision. In order to achieve an efficient outcome in this
trade-off, the robots are required to form new coalitions for each individual tar-
get. According to the taxonomy of Robin and Lacroix [11], the on-line multi-
objective κ-coverage problem is hunting mobile search, monitoring multiple
targets, with different viewpoints.

In this paper, we present a novel distributed coalition formation algorithm
considering several tasks. At its core, we propose to introduce a willingness to
interact to each individual robot as the main driver for the coalition formation.
The willingness is dependent on the state of the robot, such as local conditions
like battery level, and current level of activity. Utilizing this willingness, robots
can make decisions on whether or not to interact and provision a specific object
which eventually leads to forming coalitions with other robots. This approach
is evaluated over several scenarios of increasing number of targets, considering
both static and mobile targets separately. The performance is assessed through
different metrics, e.g., the average number of agents covering one target, the
average coverage time with at least κ agents. Furthermore, the proposed ap-
proach is compared against six other methods presented in the literature. The
proposed approach shows performance that is either comparable with the best
of the methods it is compared with – in the case of static objects – while it
exhibits a higher coverage in the case of moving targets.

The remainder of this paper is structured as follows. Section 10.2 gives
a formal definition of the online multi-object κ-coverage problem and Sec-
tion 10.3 covers the behaviour of the agents and targets, their interaction as well
as our novel coalition formation algorithm. Section 10.4 gives an overview of
the experimental setup, the performed experiments, and the obtained results.
Section 10.5 discusses the generalization of the proposed approach, while Sec-
tion 10.6 concludes the paper and outlines future work.

10.2 Problem Formulation

In the online multi-object κ-coverage problem, we assume a discrete 2D area Z
with a given width and height w and h, respectively, without any obstacles. We
also consider a set of active robots A = {a1,a2, . . . ,an}, and a set of targets or
objects of interest O= {o1,o2, . . . ,om} in this problem. Both robots and objects
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can freely move within Z, with (nonconstant, yet limited) velocities vi, where
i = 1, . . . ,n, and v j, where j = 1, . . . ,m; in their motion the robots will always
remain in Z. It is assumed that any robot can move faster than the objects, and
that the number of robots and targets is constant, i.e., targets cannot appear or
disappear. Each robot is controlled by an internal, autonomous software agent.
We refer to both as ai. Each robot has a visibility range, with radius r. An
object can be perceived by any robot, only if it is located within its visibility
range. At this point, the robot will determine the number of already provision-
ing robots for this object. Therefore, it will either initiate a new coalition, in the
case of no robots following the target, or join the existing coalition, in the case
that less than κ agents are following the target. All objects are associated with
a prescribed constant interest level l j. Levels of interest are not necessarily the
same between objects, and define the utility ui j(t) of a robot i for following an
object j with interest level l j at a discrete time-step t.

Every agent i can calculate its willingness wi to interact with others (as
detailed in Section 10.3.3) at each time-step. This can occur in different sit-
uations, e.g., (i) when a robot i first detects an object j entering or leaving
its sensing area an object j is entering the sensing area of the robot i and (ii)
when robot i receives an invitation to provision an object j from another robot.
Robots are assumed to communicate with one another via broadcast, as imple-
mented in ROS [12]. Thus, the willingness to interact shapes the cooperative
behavior of an agent and its respective robot in relation to the others. Robots
are able to change and keep track of their own state and behavior, as well as the
state and behavior of other robots. Specifically, robot’s n state is composed of
the following variables: battery level bi, range d, location `x,y, and velocity va,i.
Without loss of generality, we assume that the level of interest for the targets
is robot-independent, i.e., there is a shared knowledge among the agents on the
level of interest of different targets.

The online multi-object κ-assignment problem is solved by having at least
κ robots covering any target in the set. Consequently, two tasks should be
achieved concurrently: (i) maximizing the number of provisioned objects, and
(ii) provisioning the targets with at least κ robots. This paper addresses the
following questions:

1. What is the average time for which at least κ robots can cover all targets
moving around in an environment when using the proposed coalition
formation algorithm?

2. What is the average number of agents that can cover a target with the
proposed coalition formation algorithm?
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3. Is the motion of the targets affecting the obtained performance?

4. How does the defined value for κ affect the performance of the robot
cooperation?

5. How does the proposed method compare with other state-of-the-art tech-
niques for the κ-coverage problem?

We address these questions using two experimental setups with varying number
of either mobile or static (immobile) targets, according to metrics that analyze
the obtainable performance in terms of time to cover targets with at least κ
robots, and the average number of robots that cover the targets. Furthermore,
we compare our results with six other methods previously proposed in the lit-
erature [8].

10.3 Agent Model
In this section, we describe how a robot operates, how the agent, embodied in a
robot, updates the willingness to interact, and how these agents form decisions
to cooperate through the proposed interaction protocols. In the following we
are using the terms robot and agent interchangeably.

10.3.1 Robot Kinematics
Every robot a ∈ A follows a simple unicycle kinematic model

ẋa(t) = va(t)cos(θa(t))
ẏa(t) = va(t)sin(θa(t))
θ̇a(t) = ωa(t)

(10.1)

where xa(t) and ya(t) are the x- and y-coordinate on the map and define the
position pa = (xa,ya) of a robot a at time t, θa is the orientation of the robot,
va is the forward velocity of the robot, and ωa is its angular velocity. We
assume that the robot can localize itself within the map, and that it can detect
the obstacles within its visibility range.

A robot a ∈ A follows a set of objects Oa ⊆ O, each of which has a dif-
ferent level of interest l. The direction da over which the robot moves is thus
computed as

da(t) =
∑i∈Oa li(pa(t)−pi(t))

∑i∈Oa li
(10.2)
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making the robot to move towards all the followed objects, weighted by their
respective interest. In this way, the robot will prioritize targets with higher level
of interest. The target orientation θ◦a and the forward velocity of the robot are
therefore computed as:

θ◦a(t) = ∠da(t), (10.3)
ṽa(t) = ‖da(t)‖ (10.4)

where ∠p∈ [0,2π) is the angle of the vector p = (px, py) in its reference frame,
and it is obtained as ∠p = atan2(py, px). In order to compute the proper value
of the angular velocity, we can just use a simple proportional controller with
tracking error ea normalized between [−π,π):

ea(t) = θ◦a(t)−θa(t) (10.5)
ω̃a(t) = Kp atan2(sin(ea(t)),cos(ea(t))) (10.6)

Finally, we include saturations on the forward and angular velocities:

va(t) = min(ṽ(t),vmax) (10.7)
ωa(t) = min(max(ω̃a(t),−ωmax),ωmax) (10.8)

10.3.2 Agent Behavior
Software agents, embodied in physical robots, operate autonomously and their
behavior can be described as a state machine composed of four states: inspect,
evaluate, inspect & follow, and evaluate & follow. Figure 10.1 shows the state
machine that describes the behavior structure of an agent. At run-time, any
agent starts its operation in the state inspect, in which it moves in Z according
to a given pattern. In case a new target is spotted, or a request is received, an
agent switches from inspect to evaluate. In the evaluate state, an agent decides
how it wants to interact with the spotted target or the request for help, based
on its current state. The proposed interaction protocol is described in detail in
Section 10.3.4. The result of the interaction is a coalition of agents that will
start following the spotted target. If the agent is not part of the coalition after
the interaction, it will switch back to the inspect state, looking for other targets
in the environment. Otherwise, if the agent is part of the coalition, then it will
switch to the inspect & follow state. In this new state, the agent follows the
target, while it simultaneously inspects for new ones. In case an agent loses
track of all the targets it is following, then it switches to inspect. In case an
agent has negative willingness, spots a new target, detects that a target is going
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Figure 10.1: Agent operation state machine.

outside its visibility region, or it gets a request for help, then it switches to the
evaluate & follow state. In this state, the agent either generates a help request,
or it responds to a help request. In both cases, the agent decides if it will be
part of a new coalition, or if it is going to drop a target. Once the interaction is
complete, an agent switches back to the inspect & follow state with an updated
set of targets to follow.

Note that an agent can be part of more than one coalition, i.e., can fol-
low several targets simultaneously according to their level of interest (as per
Eq. 10.2), but a target is only followed by a single coalition. Also, notice that
transitions between states are considered to be instantaneous.

When an agent is following a set of targets, its motion is described by the
dynamic model (10.1), and by control strategy defined in (10.3)–(10.8). The
interest level of a target affects the motion of the agent according to (10.2), i.e.,
the agent’s direction is mostly affected by the level of interest of the targets.

10.3.3 Willingness to Interact

The willingness to interact w shapes the cooperative behavior of an agent, i.e.,
when an agent should ask for help and when it should give help. This parameter
does not refer to a particular task that should be completed, but rather reflects
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the general disposition of any agent to cooperate with the others. The will-
ingness to interact w takes values in [−1,1]. When w ≥ 0 the agent is willing
to provide support to other agents that have requested help. When w < 0, the
agent will raise requests for help, and for w = −1 it cannot continue with the
execution of a task on its own. The value of the willingness is updated by each
individual agent i based on several individual factors, at discrete time instants
t, according to the dynamics:

wi(t +1) = min(max(wi(t)+B>f(t),−1),0), (10.9)

f(·) = [ f1(·), . . . , fm(·)]> is an m×1 vector of the m factors that affect the will-
ingness, while B = [β1, . . . ,βm]

> is an m× 1 vector that contains the weights
of the corresponding factors on the calculation of the willingness.

The calculation of a factor fi is given by

fi(k) = φi(k)−φi,min, (10.10)

where φ(k) represents the current measurement of that factor (e.g., the current
battery level), while φmin is a minimal threshold considered acceptable (e.g.,
the minimal battery level to perform a task). The terms φ and φmin take values
in [0,1], where 0 is the minimum value of the measured quantity, and 1 its
maximum.

In this work, we consider two factors that affect the willingness to interact.
These are the battery level b, and the number of objects in Oa currently provi-
sioned by a. Other factors can be included in the calculation of the willingness,
without loss of generality of the proposed approach.

Factors can be divided into two categories: necessary and optional. The
battery level is a necessary factor, since a robot with a battery level lower than
a certain threshold may not be able to reach the moving target, or to complete
an assigned task. Therefore, an agent with a low battery level should try to
receive help from the other agents. On the other hand, the number of targets
(nO) an agent is tracking is considered as optional, since an agent can follow
several targets, but this makes its task more difficult, e.g., if 1/nO goes below
a certain threshold – the agent is following too many targets – then the agent
decreases its willingness to give help and consequently increase its willingness
to ask for help. The effect of different factors is defined by their corresponding
weights. The weight for a necessary factor βnec is defined as:

βnec(t) =

{
1/m, φnec(t)−φnec,min > 0,
−(1+w(t)), otherwise,

(10.11)
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where m is the number of all the factors, whereas the weight for an optional
factor βopt is defined as:

βopt(t) =

0, if ∃φnec,φnec(t)−φnec,min < 0,
sgn(φopt(t)−φopt,min)

m
, otherwise.

(10.12)

This ensures that necessary factors have the highest impact on the willingness
to interact. As an example, in the case the battery level is below a threshold,
then the agent should ask for help, irrespective of other factors (w=−1). Thus,
the weights of other factors should be set to zero. While we provided an ex-
ample for factors approaching a minimum, factors approaching a maximum
can also be applicable. In such a case the calculation for factors and weights
has to be adapted accordingly. More examples on factors that can affect the
willingness can be found in [13].

10.3.4 Interaction Protocol
The interaction protocol defines how agents create coalitions for any given
target and elect the corresponding leaders for these coalitions. The proposed
protocol mostly complies with the SCR design pattern [14], however differ-
ently from SCR an agent can belong to different coalitions, hence it can have
more than one leader. An agent can trigger a help request in case it spots a
new target, or it wants to extend an existing coalition to reach κ−coverage,
or it perceives that targets in its visibility range are moving away from itself,
and if it is necessary to ask for help (e.g., battery level is under the accepted
minimum). Furthermore, agents can decide to interact with one another when
they receive help requests from others. The interaction protocol is illustrated
in Figure 10.2.

When an agent spots a new target, it broadcasts an information request to
other agents together with its willingness and respective utility for provision-
ing the target. The agent waits for a specified time ∆t to receive a response
from other robots. We assume that agents can identify commonly observed
objects and assign common labels. In case a coalition exists already for the
given target, the corresponding leader will reply whether or not further agents
are needed to reach the κ-coverage. If no help is needed, then the agent con-
tinues its previous activities. If help is needed, then the agent will receive an
assignment from the leader of the coalition, based on the previously sent will-
ingness and utility. In case the agent does not receive a response within time
∆t to its initial information request, it assumes no other agent is following the
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Figure 10.2: Activity diagram of the agent’s behavior when a new target is spotted.

target. Subsequently, the process for creating a coalition and electing a leader
responsible for following the target is triggered. Initially, the agent calculates
its own willingness to help in the future coalition, and the utility from follow-
ing the target. The mechanism follows the logic of a fast bully algorithm [15],
well known in distributed systems. A request for help to follow the object is
broadcast to all other agents. Other agents send their willingness to help, i.e,
the willingness to enter the coalition, and their utility for following the specific
target. After the responses are collected, agents with a negative willingness
w < 0, are not considered further. Positive willingness of an agent i to interact
is combined with its utility ui j to form the willingness to interact to provision
a specific object j at time t:

wi j(t) = wi(t)+ui j(t). (10.13)

Utilities are defined by each agent for the individual target and can generally
vary between the different agents as well as the different targets. Examples for
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Figure 10.3: Agent ai with visibility range d, indicated with the red circle, and internal
range din, indicated with the blue circle. The targets tg1 and tg2 are indicated with
crosses, and they are moving towards and away from the agent, respectively.

this could be the size, speed, or direction of movement of the object. In our
experiments, we consider different interest levels that are agent-independent,
i.e., the agents share the same interest for the same targets. The received values
wi j(t) are ordered, and the κ agents with highest wi j(t) are selected for the
coalition. The agent with the highest wi j(t) is elected the leader. The outcome
is propagated to the other agents. The initiating agent does not necessarily need
to be part of the coalition.

Furthermore, every agent keeps track of whether the targets in its visibility
range are moving away from the robot. We introduce another internal threshold
with radius din around the robot, where din < d (Figure 10.3). When a target,
e.g., tg2 in Figure 10.3, moves out of the internal range, yet remains within
the visibility range, then a request for help is triggered. If a target, e.g., tg1, is
moving towards the agent while being within the internal and visibility range,
no request is issued. In case the willingness of an agent becomes negative,
help requests are generated. At the same time, an agent will consider dropping
its targets one by one. If the willingness remains negative or becomes −1,
eventually all targets will be dropped.

A help request means that either an agent is looking for a replacement for
itself, or it is looking for an additional agent that can enter the coalition. This is
illustrated in Figure 10.4. If an agent needs to leave a coalition, we distinguish
between leading agents and ordinary members of the coalition. If a leader
agent needs to replace itself, then the leader election needs to be repeated. The
process can include other agents not yet in the coalition, if κ-coverage is not
achieved at that point in time. On the other hand, if a common agent needs
to drop a target, then it first notifies its leader. Leaders are also responsible
for triggering continuously the extension of a coalition in order to maintain
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Figure 10.4: Activity diagram of the agent’s behavior when it needs to replace itself in
a coalition.

κ-coverage, following a monotonically increasing period.

10.4 Simulation Setup
The behavior of the agents was evaluated with computer simulations1, based
on the robot operating system (ROS) [12, 16] to model the agents kinematics,
behavior, and interaction.

The method utilizing the willingness to interact, as described in this paper,
was compared to six other methods that were previously proposed in the litera-
ture for solving the multi-object κ-coverage problem [8]. Each of the six meth-
ods is a combination of one communication model and one response model.
Two communication models are considered, broadcast BC and random RA. In
the broadcast model an agent broadcasts help request to everyone, whereas in

1The code for running the simulations is publicly available at https://gitagent@bitbucket.org/
gitagent/gitagent 2.git

https://gitagent@bitbucket.org/gitagent/gitagent_2.git
https://gitagent@bitbucket.org/gitagent/gitagent_2.git
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the random model it sends a help request to κ random agents. As for the re-
sponse models, three are considered: (i) newest-nearest NN, (ii) available AV ,
and (iii) received calls RE. In the newest-nearest model an agent will answer to
the request that is newest, and if there are multiple request at the same time, it
will respond to the one that is nearest. In the available model the agent answers
to requests according to the newest-nearest strategy only if it is not engaged in
following other target(s). In received calls, an agent will answer to requests for
objects with the least coverage, only if it is not following other targets. The six
methods chosen for comparison are: BC-NN, BC-AV , BC-RE, RA-NN, RA-AV ,
and RA-RE. Such selection is due to previous results [8], where the broadcast
and random communication models were evaluated better with respect to the
rest, and the response models were reported to have a significant impact on the
κ-coverage.

In all of our simulations, we consider a total number of nA = 10 robots start-
ing from the same initial position (0,0), with a random direction, and vi,max = 2
units per time-step. If an agent hits any boundary in Z, it will bounce back at a
90° angle, i.e., we are considering a limited area surrounded by walls. The ob-
jects to be covered are distributed uniformly in the map Z of size 100m×100m.
We consider 7 different scenarios for our experiments with an increasing num-
ber of objects. The number of objects distributed in the environment are 1, 4,
7, 13, 16 and 19 for the corresponding scenarios S0 to S6. For each simula-
tion the interest level of any target was randomly sampled from a set of levels
L = {0.3,0.6,0.9}. We performed 20 experiments for each scenario, with each
experiment having a duration of Tsim = 300 discrete time steps and a specified
seed. The latter impacts the initial location of the targets, the initial direction
for agents and mobile targets, as well as the level of interest of targets for each
experiment corresponding to a scenario. Given these settings, we analyzed the
behavior of our agents to achieve κ-coverage where κ≥ 3, and κ≥ 5.

10.4.1 Results for Static Targets

In the first set of experiments, we consider only targets that remain in their
initial location (v j = 0). Once the targets are covered, they remain covered for
the rest of the simulation, as such, the time for reaching the desired coverage
is considered one of the performance indicators for evaluation.

For every scenario, we run N different experiments. For every experiment
e = 1, . . . ,N, we compute for every target j the time to reach 1-coverage t(1)j,e ,

and the time to reach κ-coverage t(κ)j,e . Based on this information we can cal-
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culate: (i) the average time to get one target to be covered by at least by κ
agents t(κ)avg, and (ii) the average minimum time to get all the targets covered
by at least κ agents t(κ)min. These two metrics give an indication of a minimum
coverage, and a complete coverage, and the respective timing properties. They
are formally defined as:

t(κ)avg =
1
N ∑

e

1
|O|∑j

t(κ)j,e (10.14)

t(κ)min =
1
N ∑

e
max

j
t(κ)j,e (10.15)

In particular, in these experiments we study (i) the average time to get one
target to be covered by at least by 1 agent, t(1)avg, (ii) the average time to get
one target to be covered by at least by κ agent, t(κ)avg, (iii) the average minimum
time to get all the targets covered by at least 1 agent, t(1)min, and (iv) the average
minimum time to get all the targets covered by at least κ agents, t(κ)min. In all the
metrics, the lower, the better.

Results for κ ≥ 3 as well as κ ≥ 5 are shown in Figure 10.5, where t(κ)min is
given on the x-axis, and t(κ)avg is given on the y-axis. In both metrics, the lowest
value, the better. In the graph we also indicate the corresponding Pareto frontier
to highlight the best performing methods. We also compare this directly to the
cases for κ≥ 1 (only a single agent covers the target), however, the agents still
aim to cover all targets with κ ∈ {3,5} and therefore might cluster at specific
objects even when reporting results for κ≥ 1.

It can be observed that on average there are no differences between the
utilized methods for scenario S0 for κ ≥ 1, as shown in Figure 10.5. This is
due to the fact that there is only one static target in the environment, which
will be discovered at the exact same time irrespective of the method for an
experiment initiated with the same seed. There could be a shift with a couple
of time-steps in the discovery times, in case there is an occasional failure in
the ROS service calls or broadcast used by the agent when handling targets
that appear in the visibility range. Nevertheless, for κ ≥ 5, Figure 10.5d, the
minimum times are not necessarily the same, e.g., the result for method RA-AV
as compared to the six other methods.
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(a) Average vs Minimum Time to Coverage with at least one agent when tasked with κ≥ 3.
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Figure 10.5: Average time vs minimum time to cover all stationary targets (i.e., not
moving) with 1 (left) or κ agents (right). Results where agents are tasked to cover
targets with κ≥ 3.
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(c) Average vs Minimum Time to Coverage with at least one agent when tasked with κ≥ 5.
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(d) Average vs Minimum Time to achieve κ≥ 5.

Figure 10.5: Average time vs minimum time to cover all stationary targets (i.e., not
moving) with 1 (left) or κ agents (right). Results where agents are tasked to cover
targets with κ≥ 5.
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With the increase of number of targets in each scenario, the average and
minimum times to coverage also increase. For each scenario S1–S6, there is
a difference on average between the different methods. Mostly, the proposed
method, indicated with the ‘W’ in the legend, is either the best on average
or at least on the Pareto frontier, for scenarios S3 in Figure 10.5b; S2 and S5
in Figure 10.5c; S2, S5, and S6 in Figure 10.5d; and for scenarios S2 and S3
in Figure 10.5a; S2 in Figure 10.5b; S4 and S6 in Figure 10.5c; and S4 in
Figure 10.5d, respectively. Similar performance is displayed by the BC-NN
method, which is the best performing method among the ones considered in
this study.agentagentagent

When only one target is involved, the average minimum time to coverage
is lowest. In all cases, the agents will move in Z and eventually find and cover
the targets. However, when increasing the number of targets (S1–S6), it can
happen that agents gather on the first targets found, leaving remaining targets
undiscovered for the rest of the simulation. As such, all metrics are affected,
and the t(κ)j,e is saturated to the duration of the simulation Tsim − 1 2 for the
targets that were not discovered. In Figure 10.5, the points are accumulated
at the t(κ)min− 1, which means that in those scenarios there were undiscovered
targets for the whole duration of the simulation.

10.4.2 Results for Dynamic Targets

In our second set of experiments, targets move within the map Z by randomly
changing direction, with velocity vt,max = 1.5 m per time-step. In both cases,
agents move with a higher velocity va,max = 2 m per time-step. Nevertheless,
we still use the same sets of scenarios. As for the performance, for a single
experiment e = 1, . . . ,N, we consider the average time for which a target j is
covered with at least κ agents over the simulation, τ(κ)j,e , and the average amount
of agents that cover the target j over the simulation α j,e. Based on these two
quantities we compute the following metrics: (i) the average time for which at
least κ agents cover the targets, τ(κ)avg, and (ii) the average amount of agents that
cover the targets αavg. These quantities are computed as

τ(κ)avg =
1
N ∑

e

1
|O|∑j

τ(κ)j,e (10.16)

2In the final time-step the multi-agent system shuts down, hence this time-step is not considered
when dealing with the results.
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αavg =
1
N ∑

e

1
|O|∑j

α j,e (10.17)

While in our first set of experiments, featuring a set of static targets, agents will
cover a target for the whole duration of the simulation once they joined a coali-
tion, in the dynamic case, such assumption cannot be made, because agents can
lose targets as all objects are moving in Z. Furthermore, these metrics are cal-
culated twice for active and passive coverage, i.e., by (i) considering the targets
that agents are actively following by adjusting their own motion and being part
of a coalition, and (ii) considering targets that are not being actively followed,
but are within the visibility range of agents, without necessarily being part of a
coalition.

Results are shown in Figure 10.6, where the average time of coverage is
given along the x-axis, and the average number of agents is given on the y-
axis. It is possible to observe that for κ ≥ 3 the method with the willingness
is overall on the Pareto frontier, with an exception for scenario S3, shown in
Figure 10.6a. Regarding κ ≥ 5, the method with the willingness, indicated
with W in the legends of Figure 10.6, is on the Pareto frontier for scenarios
S0–S4, and the best on average for S5–S6, Figure 10.6c. The same is observed
for passive following in Figure 10.6d. Furthermore, our approach tends toward
maximizing the number of agents covering a target, thus it lies on the left side
of the Pareto frontier. Similarly to the results in the static case, the performance
of the BC-NN strategy is comparable to the method with the willingness. We
can observe that for both κ≥ 3 and κ≥ 5 the average coverage time is highest
when the number of targets is lower, in S0 and S1, falls for S2–6 when the
number of targets to be covered increases. We speculate that an increase in
the number of targets, whilst the size of the area is unchanged, might increase
the average coverage time as agents can join multiple coalitions. However,
this remains subject to further research. The impact of the chosen values for
κ can be observed as well in Figure 10.6, by inspecting the average coverage
times, which are lower for κ≥ 5 than κ≥ 3. Taking into account what is being
covered passively increases the average number of agents that cover a target.

Note that, the averages are taken over all time-steps of the simulation in-
cluding the time to discover the objects in the first place. As such the lack of
coverage before the discovery naturally penalizes the shown results.
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(a) Active Coverage κ≥ 3
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(b) Passive Coverage κ≥ 3

Figure 10.6: Average number of agents covering targets vs average coverage time of
all targets of the entire duration of the simulation. We show both active and passive
coverage. The results show the case where agents are tasked to cover targets with κ≥ 3.
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(c) Active Coverage κ≥ 5
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(d) Passive Coverage κ≥ 5

Figure 10.6: Average number of agents covering targets vs average coverage time of
all targets of the entire duration of the simulation. We show both active and passive
coverage. The results show the case where agents are tasked to cover targets with κ≥ 5.
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In our current approach, the agents are not aiming to exceed the desired
coverage. Nevertheless, this can happen due to race-conditions in the coalition
formation process. Furthermore, this can also take place when an agent detects
that a target is moving away. In this case it will try to find another agent that
can join the coalition. At the same time, the target is not dropped by the former
agent until it actually goes out of its visibility range while the new agent already
joined the coalition and might have the target within its visible range.

10.5 Generalization of the Approach

In this paper, a collaborative approach based on the willingness to interact has
been tailored to solve the κ-coverage problem for a multi-robot system. The
described framework, composed of the agent behaviour, willingness to inter-
act, and interaction protocol can be applied in other problems as well. Re-
garding the agent behaviour, the state machine presented in Section 10.3.2 can
be generalized by considering the following abstract states: idle, interact, idle
& execute, and interact & execute adapted from [13]. The latter can be spe-
cialized depending on the behaviours that the robots should have for solving
different problems, e.g., moving by randomly changing direction and inspect-
ing the space for new targets can be used to instantiate the idle state into the
inspect state as done in this paper for solving the κ-coverage problem. Whereas
the execute state can be instantiated into either the inspect & follow or evaluate
& follow, by adding the target following behaviour to the agents.

The willingness to interact formalism can be easily adopted to account for
additional relevant factors in a given application domain. The framework al-
lows for the factors to be grouped into two categories, necessary and optional,
as well as giving a specific weight to each factor. In this paper we have consid-
ered the battery level and the number of targets an agent is already following,
which correspond to the necessary and optional factors respectively. Weights
are determined in a simple way, i.e., if no necessary factor is under the the min-
imum threshold, then factors are weighted the same, otherwise the necessary
factors will override the optional ones, thus determining the final value of the
willingness.

Finally, the interaction protocol is independent of the application and prob-
lem to be solved, apart for the κ parameter which can be adjusted depending on
the size of the coalitions that the robots should be able to form, and the triggers
that agents use to initiate the interaction. In the current application domain
agents are tasked with discovering and tracking targets in their environment.
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Therefore, the triggers for executing the interaction protocol are application
dependent such as (i) spotting a new target in the visibility range, (ii) detect-
ing that a target is moving away and might soon be outside of the visibility
range, and (iii) extending an existing coalition in order to reach κ-coverage.
The fourth trigger captures the moment when an agent decides that it needs to
ask for help, which is based on the willingness to interact. This trigger is not
application dependent.

10.6 Conclusion and Future Work

This paper presented a novel, distributed, agent-centric coalition formation ap-
proach, based on the willingness to interact for adaptive cooperative behavior.
We showed that we can use this novel approach to solve the κ−coverage prob-
lem for a set of targets. The performance of this approach is measured along
two different sets of metrics for two different cases, (i) with static targets, and
(ii) with mobile targets, and compared with six methods previously proposed
in the literature. In the former case, the average time to get one target covered
with κ agents, and the average minimum time to κ−cover all objects are con-
sidered. In the latter case, the average coverage time and average number of
agents per target are considered. Results show that our approach either per-
forms comparably good in the case of static targets with respect to the BC-NN
method (the best performing among the ones considered in the paper), and that
it performs better than the other methods in terms of achieving a higher level
of coverage when it comes to moving targets.

There are three main lines of inquiry for future work. First, it is of interest
to compare further the performance of our approach with those methods that
reached similar performance like the BC-NN method. Such investigation can
include the exploration of other experimental settings that might better high-
light possible trade-offs for the utilization of the BC-NN method or the one
based on the willingness proposed in this paper. Furthermore, issues related
to how the studied models scale up in terms of, e.g., bandwidth capacity and
latency, can also be considered in the analysis. Second, security aspects can
be introduced, by considering the trustworthiness of agents. Such information
can be included in the calculation of the willingness to interact, in order to
facilitate the cooperation between agents that are more trustworthy, e.g., open
systems where new agents may be introduced or removed, similarly to recent
approaches [17, 18]. Third, some assumptions made in this paper can be re-
laxed, e.g., targets can appear and disappear at random times, or leave the area
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defined by the map, in order to adapt the current approach for solving a more
general κ-coverage problem.
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Abstract

Moving nodes in a Mobile Wireless Sensor Network (MWSN) typically have
two maintenance objectives: (i) extend the coverage of the network as long as
possible to a target area, and (ii) extend the longevity of the network as much
as possible. As nodes move and also route traffic in the network, their battery
levels deplete differently for each node. Dead nodes lead to loss of connec-
tivity and even to disengaging full parts of the network. Several reactive and
rule-based approaches have been proposed to solve this issue by adapting re-
deployment to depleted nodes. However, in large networks a cooperative ap-
proach may increase performance by taking the evolution of node battery and
traffic into account. In this paper, we present a hybrid agent-based architecture
that addresses the problem of depleting nodes during the maintenance phase
of a MWSN. Agents, each assigned to a node, collaborate and adapt their be-
haviour to their battery levels. The collaborative behavior is modeled through
the willingness to interact abstraction, which defines when agents ask and give
help to one another. Thus, depleting nodes may ask to be replaced by healthier
counterparts and move to areas with less traffic or to a collection point. At
the lower level, negotiations trigger a reactive navigation behaviour based on
Social Potential Fields (SPF). It is shown that the proposed method improves
coverage and extends network longevity in an environment without obstacles
as compared to SPF alone.
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11.1 Introduction

Wireless sensor networks (WSNs) consist of a number of interconnected spa-
tially distributed nodes equipped with sensors to capture information from the
environment. WSNs are fit for different scenarios, ranging from emergency
deployment – where the network needs to be established as fast as possible –
to long term monitoring — where the network must last as long as possible,
e.g., sensors for irrigation or vibration sensors for seismic areas. In all cases,
the network needs to provide an appropriate coverage of the target area. WSNs
may be homogeneous, when all nodes have the same role, or heterogeneous.
In both cases, WSNs typically include one or more sink nodes, Access Points
(APs), to redirect gathered data to external networks. The locations of the APs
are typically predefined and stationary, because they are usually connected to
a main power supply to route all the network traffic to an external network.
However, most nodes in WSNs are typically battery-operated. Battery life
depends on connectivity and throughput, which in turn primarily depend the
on deployment method [1]. Unfortunately, WSN deployment cannot be opti-
mized in many scenarios and it becomes quite complex for large networks [2].
The locations of the nodes in the network could be computed with optimal
approaches. However once the nodes begin to fail, those configurations are no
longer optimal. Thus, optimal approaches are not suitable for WSN, since their
nodes are prone to failure [3].

Mobile WSN (MWSN) try to solve this problem by providing nodes some
degree of mobility, so that they can deploy themselves (self-deployment) or,
at least, adjust their locations (self-healing) when other nodes start to fail, in
order to cover the gaps that appear in the network [4]. Although there are other
options, Multiple Robot Systems (MRS) have been often used in combination
with MWSN to transport nodes when needed [3, 5, 6].

As in traditional autonomous robot navigation problems, there are deliber-
ative and reactive approaches for MWSN navigation. Deliberative approaches
are meant to optimize efficiency [3, 7–11], however, they require a reliable
model of the environment – including network configuration, environment lay-
out, traffic, etc. – and they are computationally expensive. Reactive approaches
rely on local factors instead [12–16], e.g., setting a local behavior for each node
or a set of local rules that the nodes must follow. The combination of all local
behaviors provide an emergent global behaviour with reduced computational
cost, where results are not optimized and local minima may appear. In order to
avoid the drawbacks mentioned above, in the robotics domain it is common to
combine both deliberative and reactive strategies into a hybrid approach.
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A reactive approach to MWSN deployment and self-healing was proposed
in [17, 18]. The proposed approaches are a variation of the Social Potential
Fields (SPF) [19], originally proposed for navigation in a robot swarm. The un-
derlying idea is that each robot is affected by a number of forces, namely: (i) a
repulsion force depending on the Received Signal Strength (RSS) that leads to
network dispersion; (ii) an attraction force depending on how many nodes each
one is linked to that preserves connectivity; and (iii) a repulsion force depend-
ing on nearby obstacles that avoids collisions. Nodes in the MWSN move until
the sum of these forces is equal to zero, i.e., the network is balanced. Then,
they stay at their locations until a number of nodes run out of battery and the
network needs to be balanced again. This algorithm successfully extended the
network life preserving coverage as much as possible and outperformed rule-
based systems like the Backbone algorithm [20]. However, given its reactive
nature, it had a number of problems because no high level strategy was used
to determine specific node locations. In this work, we propose to use an agent
architecture to add a cooperative layer to the reactive system.

Agents have already been used in MRS, specifically in robot teams and
swarms [21–23]. Coalition formation algorithms designed for multi-agent sys-
tems have been adapted for the multi-robot domain in order to solve tasks such
as box-pushing, cleaning, and sentry duty [23,24]. Cognitive agents have been
integrated into robotic swarm architectures with the purpose of guiding the be-
haviour of the group without losing the advantages of the swarm approach [21].
Others have applied distributed scheduling mechanisms in robot teams operat-
ing in a hospital environment, mapping an agent to a robot, thus allowing each
robot to compute its own schedule in a distributed way [22].

Another relevant aspect relates to the autonomy of agents involved in the
decision-making. Autonomy can be defined based on the dependencies be-
tween agents, i.e., when an agent a needs the intervention of another agent b in
order to complete its goal G, then a depends on b for G, and is not autonomous
with respect to b in this context [25]. Furthermore, mechanisms with which
agents change their levels of autonomy based on the circumstances, have also
been investigated. They range from adjustable autonomy, where there is a hu-
man in the loop, an operator, which makes the decision on whether to change
autonomy levels of the agents, to adaptive autonomy, where agents themselves
decide their own level of autonomy [26].

In this work we present a hybrid control architecture for a swarm of robot
MWSN nodes where the reactive layer is controlled by a SPF and the coop-
erative layer relies on an agent architecture that allows agents to adapt their
autonomy during their operation. This agent approach is based on the willing-
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ness to interact abstraction, which determines when agents ask and give help
to one another [27]. As in most works involving a large number of robotic
entities [3,6], the evaluation of our hypothesis – that the hybrid agent approach
yields better performance than SPF alone – relies on simulations. However,
the working parameters for the presented algorithm have been set using a re-
duced number of real robots. Results show that the proposed method increases
the coverage in the network, as well as the network longevity as compared to
SPF alone. Furthermore, the achieved improvement is consistent for the whole
operation of the network.

The rest of this paper is organized as follows. Section 11.2 describes in
detail the problem to be solved. Section 11.3 presents the previously pro-
posed low level reactive navigation algorithm. Section 11.4 describes the hy-
brid agent approach and the willingness to interact abstraction that affects how
agents collaborate with one another. Section 11.5 describes the design of the
experiment, while Section 11.6 presents our results. Concluding remarks and
an outline of directions for future work are given in Section 11.7.

11.2 Problem Formulation
Let’s assume an area Z with known dimensions 〈dw,dh〉, and n agents1 ai ∈
{a1, . . . ,an} allowed to move in Z. Each agent is characterized by its battery
level bi, and it is able to connect to others within its communication range rC.
An agent’s battery is impacted by: (i) its motion in Z; and (ii) the amount of
traffic it routes. Therefore, agents will have different life-spans, depending on
how much distance they have covered, and how much traffic they have routed.
The amount of traffic depends on the topology of the network and on the rout-
ing algorithm, thus, it is very hard to predict a priori in MWSN. Similarly, the
robot motion in a configuration with a large number of agents is also hard to
predict. Instead, these parameters are measured by each node through its life.

Agents have two goals, (i) to provide as much coverage for the network
as possible, and (ii) to extend the longevity of the network as much as possi-
ble. Coverage depends on the network topology, so it is important to distribute
robots adequately. The longevity of the network depends on the lifespans of
the robots in the MWSN. Therefore, the second goal is addressed by both mini-
mizing the travelled distance of the agents, which aims at potentially extending
their lifespans, and by distributing the traffic load uniformly among nodes.

1In this paper the terms agent, robot, and WSN node are used interchangeably, as we have one
agent per robot.
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11.3 SPF
As commented, the reactive system consists of a cooperative agent based layer
and a reactive low level algorithm. Specifically, the reactive layer uses SPF
algorithm proposed previously [17] for deployment and self-healing. The orig-
inal SPF was proposed for autonomous navigation in swarm robots by Reif
and Wang [19]. SPF defines attraction and repulsion forces to set goals and/or
constraints. In our system, our goals are: i) to spread the network to achieve
the maximum possible coverage with living nodes; ii) to preserve connectivity
among living nodes; and iii) to avoid collisions when the robots move. Hence,
three forces are defined.

• Obstacle repulsion force(s) fr1(ri, j) repel the robot from other robots or
physical obstacles in its vicinity to prevent collisions. This force is only
significant in the vicinity of physical objects.

• Deployment repulsion force(s) fr2(ri, j) moves robots away from each
other to spread them and increase coverage.

• Cohesion force (connectivity attraction) fc(ri, j) increases with ri, j to
avoid loss of communication among nodes.

ri, j being the distance between robots i and j. In order to estimate relative
distances between robots and with respect to the coverage area boundaries,
we need a node localization technique. The locations of all elements under
simulation is always known. In real tests, locations could be estimated by
combining robot odometry and RSS-based trilateration [28, 29].

The combination of all three forces for each node in the network returns
an emergent motion vector. A node stops moving when that vector is under
a threshold fu. When all nodes stop, the network is balanced. Afterwards,
if any force changes for a node, e.g., nearby nodes die or they have to move
significantly for one reason or another, that node moves again. If it affects other
nodes in the region, the network will need to be balanced again. This process
is repeated in time until the performance of the network is deemed insufficient
after enough nodes have died.

It can be observed that there is no high level strategy in the robot motion at
this point. Nodes simply respond to the defined forces and no plan is made to
increase the network life by considering the specifics of each node. The main
novelty of the present work is the addition of an agent layer over the SPF. We
assign an agent to each robot in the network, which is aware of the different



11.4 Agent Approach 151

parameters that the robot uses to calculate SPF forces, in addition to its battery
level and routed traffic. Agents may decide that some robots need to switch
location with others when their battery level is not fit to route the traffic in the
area. Thus, by purposefully redirecting nodes when necessary to adapt to the
network traffic specifics, we increase its average life. The following sections
describe this proposal in detail.

11.4 Agent Approach
This section describes how a cooperative agent approach based on the willing-
ness to interact is combined with the presented reactive SPF method, in order
to address the problem described in Section 11.2 for maximising the coverage
and extending the longevity of a wireless sensor network. A detailed account
is given on how agents compute their willingness to interact, and on the nego-
tiation protocol used.

11.4.1 Agent Behaviour in the MWSN

The operation of agents in a wireless sensor network follows three phases, ini-
tialization, deployment, and maintenance. During the first phase agents are
started and their state variables are initialized. Afterwards, the deployment
phase follows using SPF, in which agents move away from the initial locations
in order to extend coverage of the target area as much as possible, while keep-
ing the connectivity to the AP. When the deployment is complete and the net-
work is stabilized, agents continue draining their batteries due to traffic routing.
As commented, not all agents have the same battery level after deployment, as
they have not travelled the same distance. Furthermore, depending on their lo-
cation and the routing algorithm, some may route far more traffic than others.
Hence, some agents may be depleted before others. If an agent is depleted,
it may stay on location as a new obstacle or travel back to a battery charging
station, leaving a ”hole” in the network. When a number of agents have died,
the SPF needs to be run again to re-stabilize the network. Alternatively, rather
than waiting for nodes to be depleted, the proposed approach gets nodes with
higher battery levels to replace the ones that are about to be depleted. Thus,
allowing for a more graceful degradation of the coverage, and extension of the
life of the network.

Let’s assume a critical battery level bl0 defined as the amount of battery
that an agent needs to go to a collection point, e.g., an AP. This value could
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be different for every agent, as it depends on where in the network an agent is
positioned, or we could have a safe threshold that guarantees that a node can
reach the collection point from any location in the coverage area for simplicity.
Furthermore, let’s assume two battery levels blh and bl1 defined as bl0 ≤ blh ≤
10% ·bl0+bl0, and bl0 ≤ bl1 ≤ 30% ·bl0+bl0, respectively. The thresholds are
selected heuristically and are used to indicate how close a robot’s battery is to
its critical level.

The first agent to reach the bl0 triggers the first negotiation round in the
network. Then, all agents with battery level below b(t)l1 start sending help re-

quests to the network to ask agents with battery above b(t)l1 to replace them.
The urgency of a request sent by an agent in need, as well as the disposition to
help by other agents is captured in the willingness to interact, as described in
the next subsection. The agents with battery above b(t)l1 are the ones that will
respond to these help requests and move to new locations if so decided.

After a negotiation round is complete, all agents with battery level be-
low b(t)lh move towards their collection point. These agents are too depleted
to be useful anymore. Note that we do not remove only the one node that
reached b(t)l0 , but a percentile of nodes that will reach it in the near future.
Since most nodes will probably move during the balancing stage, nodes with
the lowest battery would probably reach the removal threshold shortly after.
Hence, setting two thresholds avoids running SPF each time a single node
needs to leave. After the assignment to locations is complete, negotiation-
winning agents move towards their target positions. Nodes with battery be-
tween [b(t)l0 ,b

(t)
l1 ] do not move at all. During this motion stage, only obstacle

repulsion forces are active to avoid collisions. Finally, after all moving agents
have reached their target locations, the SPF is run again in order to balance the
network.

11.4.2 Willingness to Interact

The willingness to interact defines a general disposition of an agent to interact
with other agents, by either asking or giving help [27]. The willingness at time
t, w(t) ∈ [−1,1], depends on the internal state of an agent, and is not related
to any particular task or help request that may have been received from others.
In this paper, the calculation of the willingness to interact is influenced only
by the current battery level bc. Note, further, that the previously proposed
equation [27] has been adapted in order to include WSN related parameters.
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The willingness to interact at a time t is given by,

w(t) =


−1, if b(t)c ≤ b(t)l0 ,

− b(t)c −b(t)l0

b(t)c
, if b(t)l0 < b(t)c ≤ b(t)l1 ,

b(t)c −b(t)l1

b(t)c
, if b(t)l1 < b(t)c .

(11.1)

This equation states that when an agent’s battery is below b(t)l1, the corre-
sponding willingness will be negative, and the agent is in a state where it is
ready to ask for help. Furthermore, the closer b(t)c is to b(t)l0 , the more nega-
tive the willingness will be. If the value for the willingness goes below the

threshold wH =− b(t)lh −b(t)l0

b(t)c
corresponding to b(t)lh , the agent might soon reach the

critical battery level. When at least one agent’s willingness value becomes −1,
i.e., at least one has reached the critical battery level, then agents below wH
start asking for help and moving toward the collection point, whereas agents
with wH ≤ w ≤ 0 stay where they are and start asking for help. If b(t)l1 ≤ b(t)c
then an agent’s willingness is positive, therefore the agent can respond to help
requests from others in the WSN.

Once a request for help is initiated, agents with positive willingness will
reason to meet this request. Furthermore, all requests for agents below wH
are considered, whereas for the others only those requests where the willing-
ness is not more than 20% over wH are considered. This threshold is also set
heuristically, and is used to indicate which agents are closest to the hysteresis
level. The willingness specifies the overall disposition of an agent to interact
based on its own state. Nevertheless, when an agent gets a request for help,
the willingness needs to be refined to reflect the trade-off between staying in
the current position with a particular traffic load, and moving to a new posi-
tion with another traffic load. This adjustment is done by incorporating in the
willingness the utility of an agent for moving to a new position with a known
traffic load (Equation 11.2).

W (t) = w(t)+u(t), (11.2)

where u(t) is the utility for moving to a new position, calculated as,

u(t) =


1− b(t)m +b(t)n

b(t)c

+

b(t)c

b(t)A

− b(t)c

b(t)B

b(t)c

b(t)A

+ b(t)c

b(t)B

, if 1− b(t)m +b(t)n

b(t)c
≥ 0.3,

−w(t), otherwise,

(11.3)
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where b(t)m is the battery required to move to the new position, b(t)n is the battery
level to go from the new position to the collection point, b(t)A is the battery
spent on routing per iteration in the current position, and b(t)B is the battery that
would be spent for routing in the new position. This means that, if an agent has
at least 30% of battery on top of what is needed to go to a new position, and the
collection point thereafter, then it proceeds with reasoning on whether to help.
Otherwise, the utility is set to −w(t) and, given Equation 11.2, the willingness
of the agent will be 0, thus it will not take part in the negotiation. When an
agent has enough battery for useful motion, then the impact of the traffic load
is also considered. If the new position requires more battery, then the utility
is decreased, otherwise it is increased. In brief, agents with more battery will
favor more traffic intense locations and vice-versa.

In this paper, the willingness to interact is only dependent on the battery
level, however, in other applications there might be other state variables to
consider, e.g., number of tasks needed to be achieved concurrently. The same
consideration holds for the calculation of the utility.

11.4.3 Negotiation Protocol

The negotiation protocol is triggered when at least one agent in the system
reaches its critical battery level bl0, or when the AP identifies a dead node in
the network that did not ask for help in time. In the former case, agents with
negative willingness will send a help request to all alive nodes in the network,
collect the responses, assign the agent with the highest positive willingness,
and notify the assigned agent by sending a packet in the network. In the latter
case, the AP will send a help request to all alive agents on behalf of the dead
node. Moreover, the AP handles only one dead dead per negotiation round.
Afterwards, from the responses, the agent with the highest positive willingness
is assigned to the location of the dead robot, and notified. Agents with pos-
itive willingness will process the requests and send their answers back to the
requesting agents. A request will be considered if it comes from those agents
below wH , as well as those agents with willingness not more than 20% on top
of wH .

All additional packets generated due to the negotiation between agents,
and how they affect the battery drainage, are computed. For the calculation
of the number of packets that flow through the network and are routed by the
nodes, we assume that the network uses a limited flooding strategy known as
geographic routing, according to which each packet sent by an origin towards
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a destination is re-transmitted by other nodes but only if they are nearer to the
destination. This type of strategy is widely used in WSN when the network
deployment is not planned and signaling traffic needs to be very limited to
extend the network life as much as possible [3, 30]. More details are provided
in Section 11.5.2.

11.5 Experiment Design
This section describes the hypothesis investigated in this paper, the metrics
used for the evaluation of our approach and its comparison with SPF, the com-
munication model, and the simulation setup used for generating the data used
in the analysis.

11.5.1 Hypothesis and Evaluation Metrics
The hypothesis investigated in this paper is formulated as follows:

Hypothesis 1. The hybrid approach that combines agent collaboration with
a reactive layer for adaptation, yields better results with respect to network
coverage and longevity of the network in the maintenance phase of a MWSN,
as compared to a solely reactive approach.

In order to evaluate the hypothesis, the following metrics are defined: blan-
ket coverage, which addresses the coverage concern, and energy efficiency and
consumption which indirectly address the longevity of the network. Blanket
coverage refers to any point of the area of interest covered by at least one
node [31]. Assume a node i that covers an area Ai. Then the coverage for n
nodes over the whole area A is calculated as:

C =

⋃
i=1,...,n Ai

A
. (11.4)

Equation 11.4 is transformed into a probabilistic model [32] as follows:

C =
m

∑
i=1

pi

m
, (11.5)

where pi is the probability of detecting an event in cell i, in a probabilistic grid
with m cells. The probability is given by:

pi = 1− p j = 1−
n

∏
j=1

(1− pi j), (11.6)
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where pi j is the probability that node j detects an event at location i.
Aspects that relate to energy are captured on one hand by the uniformity of

the network U for n nodes (Equation 11.7).

U =
1
n

n

∑
s=1

Us, (11.7)

Us =

√√√√ 1
Ks

Ks

∑
j=1

(rs, j− rs)2, (11.8)

where Ks, j represents the number of nodes close to node s, rs, j the distance
between nodes s and j, and rs the average distance between s and its closest
neighbours.

On the other hand, such aspects are also reflected in the average power
consumed by the nodes to send a message P (Equation 11.9).

P =
1
n

n

∑
j=1

P j, (11.9)

P j =
1
n

n−1

∑
j=1

Ps, j, (11.10)

Ps, j = Ps1 + · · ·+Psk, (11.11)

where P j is the average power for node j to send a packet to the network, and
Ps, j is the power consumed to send a message from node s to j, over k hops
needed for the packet to reach the destination.

Finally, the overhead produced by the packets generated due to the negoti-
ation between agents is estimated and compared to the total number of packets
routed in the network.

11.5.2 Simulation Setup
The hypothesis has been evaluated in simulation2, by comparing the perfor-
mance of SPF alone [18], with the proposed hybrid approach combining both
SPF and agent collaboration. The environment used for the evaluation of the
SPF approach, proposed previously [17], has been extended to support agent
negotiation, and relies on the tools provided by the Player/Stage simulator [33].

2The code for running the simulations is publicly available at https://bitbucket.org/gitagent/
gitagent wsn/src/master/

https://bitbucket.org/gitagent/gitagent_wsn/src/master/
https://bitbucket.org/gitagent/gitagent_wsn/src/master/
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The simulated area has a size of 150x150m2, scale 1 : 10, and is populated
by n = 100 robots. Each robot is initiated with a battery level b0 = 3000mAh.
Only the sink is assumed to be connected to the power supply, and will not
deplete. We have considered two main causes of battery drainage: the routing
of packets through the network and the movement of the robots.

Assuming that the robots move at a constant speed, the charge drained from
the battery (in mA ·h) when a robot moves 1m can estimated as:

b1m =
mC

v ·3600
= 1.11mA ·h/m, (11.12)

where mC = 200mA is the electric current that flows through the motor
while the robot is moving, and v = 0.05m/s is the robot speed, in accordance
with the consumption model of the Hexbug robot toys derived in previous
work [18].

The other cause of battery drainage is the network operation, which is heav-
ily influenced by the nature of the data traffic and also by the behaviour of
the communication protocols, and in particular by the routing strategy and the
medium access control (MAC) mechanism. A typical low-power and short-
range communication transceiver requires a supply current of 10-20mA during
its transmission and reception operations [34]. Therefore, each time a node
sends a packet some battery charge is consumed, but also the battery is drained
when reception is enabled (either if data is actually being received or not).
The MAC strategy of the link layer determines how much time the transceiver
spends in each possible state (transmission, reception or sleep) during its oper-
ation. In order to save battery, a duty-cycling MAC strategy is typically used to
allow the transceiver to remain in a low-power state most of the time [35] while
maintaining the network operational. Thus, our simulation model considers
two main sources of battery consumption due to network operations: a constant
background consumption due to the duty-cycling operation, which is equal for
every node in the network, and the consumption caused by packet transmis-
sions, which depends on how many packets each node is sending and/or rout-
ing.

Assuming that the MAC parameters are properly tuned, the average current
drained during duty-cycling operation can be as low as 1% of the current re-
quired when the transceiver is in the receiving state [36], so in our simulation
model we have considered that 0.15mA · h are drained from the battery each
hour of network operation. On the other hand, duty-cycling strategies require
each packet to be repeatedly transmitted over a period of time to guarantee it
is finally received, which increases the battery waste of sending a packet. In
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our simulation we assume a wake-up frequency of 20 Hz for the duty-cycling
protocol, so each packet should be transmitted repeatedly during a 50ms in-
terval. The supply current of the transceiver during the transmission operation
depends slightly on transmission power, which in turn determines transmission
range. In accordance with the datasheet of a commercial transceiver [34], our
model considers a 12.5mA supply current during transmission for a coverage
range of 25m. Regarding all this, the charge drained from the battery each
time a packet is sent and/or routed by a node is set to 1.74 · 10−4mA · h. To
calculate the amount of packets routed by each node, both the data traffic sent
by the sensor nodes to the AP and the packets sent during the agent negotia-
tion rounds have to be regarded. A simple model has been considered for the
data traffic sent by the nodes to the AP during network operation: each node
periodically tries to send one packet to the AP (at a rate of one packet every
10 seconds), which is routed through the network by intermediate nodes. Also,
during the agent negotiations, some packets have to be exchanged between
nodes requesting help, nodes willing to help, and the AP, and these packets
are also routed by intermediate nodes in order to reach their destinations. As
mentioned in Section 11.4.3, a geographic routing mechanism is adopted to
compute the number of packets each nodes routes. Geographic routing oper-
ates over multi-hop mesh topologies and its main advantages when compared
to other routing strategies for WSN are that it provides a reasonable scalability,
adapts quickly to network topological changes, and is stateless and, therefore,
does not require additional signaling for routing [30,37]. Our simulation model
implements one of the simplest approaches to geographic routing, the closest
neighbor routing: a given node i broadcasts a packet that is received by all of
its neighbor nodes within its transmission range. The receiving neighbor nodes
broadcast the packet to their own coverage zone, but only if they are closer
to the destination node than the one from which they received the message.
A node never re-transmits the same packet more than once. This algorithm
generates a partial flooding, but is very simple and reasonably energy-efficient.

In regards to robot motion, the parameters of the three different forces ap-
plied to each robot except the AP, have been obtained heuristically, and depend
on the modeled physical robots. The obstacle repulsion force is calculated as:

fr1(ri, j) =−
0.001
(ri, j)8 . (11.13)

The deployment repulsion force is calculated as:

fr2(ri, j) =−
20

(ri, j)7 . (11.14)
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The cohesion force is calculated as:

fc(ri, j) =−
α ·n f ail

n ·nnearAP
, (11.15)

where n f ail is the number of depleted nodes, and nnearAP is the number of nodes
directly connected to the AP (i.e., located within the coverage area of the AP).

The simulation will stop when more than 70% of the robots have depleted
their battery, i.e., their current battery level is lower than 5% of the initial bat-
tery level. It is assumed that the locations of all the robots, as well as the
boundaries of the area are known. In a physical environment the robots would
rely on triangulation using their own RF signals for localization. Ideally, the
sink node will be static as well, so its position will be also known. Usually, at
least two more beacons (with known positions) are used in the deployment area
so the other nodes can triangulate themselves. Of course, triangulation errors
may be up to a few meters and the error will also propagate for nodes that tri-
angulate themselves using information from mobile nodes instead of beacons.
Nevertheless, the error will not accumulate over time, as the positions are re-
calculated from the RSS at every new triangulation. More importantly, these
errors are not critical for the application – at most, robots will end a few meters
away from the destination or re-transmit some unnecessary packets. If local-
ization is critical, more beacons could be added where necessary. Finally, there
are no obstacles in the environment, but dead robots with depleted batteries are
treated as obstacles.

11.6 Results
The comparison between the combined agent approach and the SPF was done
by considering two values for the α parameter in the calculation of the cohesion
force fc(ri, j) active in the network, α ∈ {5,20}. Thus, there are two configu-
rations for each approach, namely (i) SPF1 with the base-line value for the
cohesion force defined as in previous work (α = 20) [17, 18], (ii) SPF2 with
reduced cohesion force (α= 5), (iii) AA1 with the base-line cohesion force, and
(iv) AA2 with reduced cohesion force. Note that, for AA1 and AA2, the battery
waste for the packets generated due to the negotiation is taken into account in
the battery consumption of each robot.

Simulations for each of the four cases were repeated 30 times, with the
corresponding means and standard deviations (see Table 11.1) taken over the
values of each metric at the step where less than 50% of the nodes are alive, and
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Table 11.1: Statistics for the metrics over 30 runs.

Statistics for 50% nodes dead
cov. dist.(m) uniform. time(days)

avg std avg std avg std avg std

SPF1 0.45 0.008 84.44 1.32 0.53 0.0056 65.84 1.85
SPF2 0.02 0.001 49.81 0.56 0.43 0.0110 106.83 5.96
AA1 0.48 0.012 94.44 4.55 0.51 0.0074 63.89 2.04
AA2 0.67 0.021 80.13 3.44 0.71 0.0152 75.77 3.37

Statistics at simulation end
cov. dist.(m) uniform. time(days)

avg std avg std avg std avg std

SPF1 0.30 0.0088 102.23 2.05 0.45 0.0091 110.2 4.6
SPF2 0.30 0.2435 62.76 2.12 0.54 0.1118 209.0 10.9
AA1 0.28 0.0050 144.95 8.62 0.39 0.0113 108.7 2.7
AA2 0.41 0.0097 109.73 7.53 0.55 0.0298 139.5 5.5

at the end of the simulation. Results in Figures 11.1-11.7 consist of the curves
for each simulation run, as well as the average over 30 runs, for every method.
Visually, methods can be distinguished by the color hue, with bolder lines for
the averages. A direct average of the curves is not possible because each run
yields different length of the simulation. The average is therefore computed
considering up to the shortest simulation for the considered method.

The averaged values (Table 11.1) show the state of the network under the
different methods for two different time points as aforementioned. It can be
seen that when the 50% mark for the dead nodes is reached, AA2 achieves
better coverage and uniformity with respect to the rest, whereas with respect
to the distance walked it performs better than AA1. Moreover, SPF2 is the
last to reach the 50% mark, followed by AA2, with SPF1 and AA1 being the
fastest to reach such level of dead nodes. At the end of the simulation, AA2
maintains higher levels of the coverage, with the rest of the methods showing
slightly worse performance. Regarding uniformity, at the end of the simulation
AA2 and SPF2 are rather comparable, outperforming the other two. In terms
of walked distance and longevity of the network, the results are similar to the
results for the 50% mark. During the operation of the network, as time passes
and nodes become depleted, the AA2 method consistently achieves higher cov-
erage than the others (Figures 11.1-11.2) 3. Note that an area Ai is considered

3Note that the sampling frequencies for the four methods is different. This is because the SPF-
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Figure 11.1: Coverage with respect to time

covered if the covering node is connected to the AP, either directly, or through
several hops. The nodes close to the AP route higher amounts of traffic, as
compared to the nodes in the outskirts of the network. Thus, they become de-
pleted faster. When the cohesion force is reduced for SPF2, and the central
nodes start to die, the network does not shrink to keep the connectivity to the
AP. Instead a gap is created in the network (see Figure 11.3). The resulting
coverage goes close to 0. Nevertheless, it can happen that the nodes manage
to come closer to the AP and reconnect at the end of the simulation, thus im-
proving on the coverage as well as the other metrics. In the case of AA2, when
central nodes start to die, they are replaced by nodes at the outskirts, as such
the nodes remain connected to the AP. The nodes at the outskirts are the first
to move because their battery levels are highest, which is due to the low traffic
load. It is possible to observe that the AA2 method yields consistently better
coverage, throughout the whole operation time of the network, oppositely to
SPF2 which can by chance recuperate close to the end of the simulation.

The network, in terms of alive nodes (Figure 11.4), lasts the longest for
the SPF2 method. However, in this case alive nodes become disconnected

based methods are only rerun when the nodes breakdown and the network should balance. In
between, the alive nodes are stationary. However, for the agent-based methods, the negotiations
start taking place before any nodes breakdown, i.e., the time between failures of nodes is simulated
as well.
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Figure 11.2: Coverage with respect to the number of alive nodes

from the AP. The SPF1 and AA1 methods are comparable in terms of depleted
nodes over time, nevertheless with SPF1 nodes last longer. The AA2 method
has a consistently lower rate of depleted nodes over time as compared to SPF1
and AA1, resulting in highest network longevity. The life of the network is
extended with circa 29 days on average as compared to SPF1. With respect to
the distance traveled by nodes (Figure 11.5), SPF1 and AA2 are comparable,
whereas AA1 has the highest distance traveled. The SPF2 method has the
lowest traveled distance, due to the reduced cohesion force, the nodes will not
move towards the AP to keep the connectivity.

The AA1 and AA2 methods generate additional packets in the network due
to the negotiation between agents overtime. The averages for the total amount
of negotiation packets over the total amount of routed packets in the network
are 2.1× 10−4 and 1.8× 10−4, for AA1 and AA2 respectively (Figure 11.6).
Therefore, the battery consumption due to this overhead is negligible.

The AA2 method outperforms the other methods in our tests with respect
to uniformity (Figure 11.7). Whereas, SPF1 and AA1 are comparable until
the 65th day, approximately. Afterwards, as the nodes keep dying, uniformity
is preserved better with SPF1. Similarly to the coverage metric, for some
experiments SPF2 regains connectivity close to the end of the simulation, thus
improving on the uniformity as well.
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Figure 11.3: Robot layout on the simulated map for an intermediate step of the simula-
tion.
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11.7 Conclusion

A hybrid agent approach, which combines a reactive layer with explicit col-
laboration between agents for the self-healing phase in mobile wireless sensor
network has been presented. The reactive layer is based on a SPF algorithm.
The agent collaboration part is modeled through the willingness to interact ab-
straction, which defines when agents ask and give help to each other based
on their battery level. It is shown that the hybrid agent approach improves
the coverage and longevity of the network, as compared to the social potential
fields algorithm. Furthermore, the proposed approach does not require a high
cohesion force to keep the nodes connected to the AP. Instead, this comes as
a result of how agents negotiate with one another. After a negotiation, nodes
at the outskirts of the network with low traffic load, take the place of central
nodes, which become depleted at a faster pace.

There are four lines of inquiry for future work. Firstly, the comparison be-
tween the hybrid agent approach and the social potential fields algorithm can
be extended to account for environments with obstacles. Secondly, machine
learning techniques can be used to adjust the forces for each node in the net-
work, depending on individual battery levels, and traffic load. Thirdly, other
delegation strategies could be investigated, and compared to the current work
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where agents drop their current positions when assigned to new ones. Further-
more, the reassignment of agents could be negotiated before the critical battery
level is reached, in order to send depleting agents in locations with less traf-
fic. Lastly, it is of interest to evaluate the proposed approach for hierarchical
networks with several levels of the nodes.
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