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Abstract

In real-time systems functional requirements are coupled to timing require-
ments, a specified event needs to occur at the appropriate time.

In order to ensure that timing requirements are fulfilled, there are two main
approaches, static and measurement-based. The static approach relies on mod-
eling the hardware and software and calculating upper bounds for the timing
behavior. On the other hand, measurement-based approaches use timing data
collected from the system to estimate the timing behavior.

The usability of static and measurement-based approaches is limited in
many modern systems due to the increased complexity of hardware and soft-
ware architectures. Static approaches to timing and schedulability analysis are
often infeasible due to their complexity. Measurement-based approaches re-
quire that design-time measurements are representative of the timing behavior
at run-time, which is problematic to ensure in many cases. Designing systems
that guarantee the timing requirements without excessive resource overprovi-
sioning is a challenge.

A Hidden Markov Model (HMM) describes a system where the behavior
is state-dependent. In this thesis, we model the execution time distribution of
a periodic task as an HMM where the states are associated with continuous
emission distributions. By modeling the execution times in this manner with a
limited number of parameters, a step is taken on the path toward tracking and
controlling timing properties at runtime.

We present a framework for parameter identification of an HMM with
Gaussian emission distributions from timing traces, and validation of the iden-
tified models. In evaluated cases, the parameterized models are valid in relation
to timing traces.

For cases where design-time measurements are not representative of the
system at runtime we present a method for the online adaptive update of the
emission distributions of an HMM. Evaluation with synthetic data shows that
the estimate tracks the ground truth distribution.

A method for estimating the deadline miss probability for a task with ex-
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ecution times modeled by an HMM with Gaussian emission distributions, in
a Constant Bandwidth Server (CBS), is proposed. The method is evaluated
with simulation and for a synthetic task with a known Markov Chain structure
running on real hardware.



Sammanfattning

I realtidssystem är funktionella krav kopplade till tidskrav – en viss händelse
måste inträffa vid rätt tid. För att försäkra sig om att tidskrav är uppfyllda
finns två huvudsakliga metoder – statisk eller mätningsbaserad. En statisk
analys baseras på modeller av hårdvara och mjukvara, och beräknar en övre
gräns för tidsbeteendet. Mätningsbaserade analyser använder insamlat data
från systemet för att uppskatta tidsbeteendet. Användbarheten av både statiska
och mätningsbaserade metoder är begränsad i många moderna system efter-
som komplexiteten hos hårdvara och mjukvara ökat. Statiska metoder är ofta
omöjliga att genomföra på grund av komplexiteten. För mätningsbaserade
metoder krävs att mätningarna som insamlats vid design är representativa för
tidsbeteendet i drift, vilket är svårt att garantera i många fall. Att designa
system som garanterar tidskraven utan överdriven resurstilldelning är en ut-
maning. En Hidden Markov Model (HMM) beskriver ett system med be-
teende som är tillståndsberoende. I denna avhandling modellerar vi exekver-
ingstidens fördelning hos en periodisk task (uppgift) som en HMM där till-
stånden är kopplade till kontinuerliga emissionsfördelningar. Genom att mod-
ellera exekveringstiderna på detta vis med ett begränsat antal parametrar, tar
vi ett steg på vägen mot att följa och kontrollera tidsbeteendet i drift. Vi pre-
senterar ett ramverk för parameteridentifiering för en HMM med Gaussiska
emissionsfördelningar från tidsdata, och validering av de identifierade mod-
ellerna. De parametriserade modellerna är giltiga i relation till tidsdata i de
fall som utvärderats. För fall när mätningar vid design inte är representativa
för systemet i drift presenterar vi en metod för direkt adaptiv uppdatering av
emissionsfördelningarna i en HMM. Utvärdering med syntetiska data visar att
uppskattningen följer den sanna fördelningen. En metod föreslås för att upp-
skatta sannolikheten för att missa en deadline när exekveringstiden modelleras
som en HMM med Gaussiska emissionsfördelningar hos en task i en Constant
Bandwidth Server (CBS). Metoden utvärderas med simulering och med syn-
tetiska program med känd Markov-struktur som körs på verklig hårdvara.
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Chapter 1

Introduction

In real-time systems, we must consider requirements on timing properties, in
addition to functional requirements. It is of importance to have the correct
behavior at the appropriate time.

In Safety-Critical Systems (SCS), such as a car or a radiation treatment
system, malfunction can lead to loss of life or serious injury. The functionality
of for example braking, steering, and radiation delivery systems needs to be
computed correctly and the result of the computation needs to be available at
a certain time. The brake needs to be applied timely after the pedal is pushed.
Likewise, the radiation needs to be delivered to the tissue for an exact amount
of time - to cause damage to the tumor, but allow the surrounding tissue to
repair. In hard real-time systems, failures to meet timing requirements, e.g.,
deadline misses, are considered to be system failures. The notion of hard real-
time systems applies to critical timing requirements in SCS.

There are also systems where timing requirements affect the operation in
less critical manners. For example, in video streaming or other multimedia
applications, failures to meet a deadline can cause a deterioration of the user
experience or Quality of Service (QoS) [20]. In robotic or process control sys-
tems, failures to meet a deadline can affect the Quality of Control (QoC) [49].
These systems are referred to as soft real-time systems, and these are the sys-
tems we consider in our research.

1.1 Motivation

In timing analysis, the execution times of tasks or programs are mathemati-
cally modeled and analyzed. Schedulability analysis refers to analysis of the
response time of functionality that may involve one or several tasks. In con-
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4 1.2. Probabilistic Timing Analysis

ventional timing and schedulability analysis, the Worst-Case Execution Time
(WCET) [69], and Worst-Case Response Time (WCRT) of tasks are estimated
or upper bounded. Static Analysis, Dynamic/ Measurement-Based Analysis,
or Hybrid Analysis are utilized to retrieve the estimates or bounds. The results
are used to ensure that the system processor resources are sufficient and that
all deadlines will be met.

Today’s complex systems are equipped with hardware to increase the com-
putation speed. Examples of such hardware are pipelines, branch prediction,
out-of-order execution, and caches or scratchpads. In addition, today’s systems
often have multiple cores and allow for more complex software and mixed-
criticality systems. Introduction of these acceleration features generally de-
creases the average execution and response times, but does not necessarily
have a large impact on the worst-case. This causes additional variation in
execution times and response times, and contributes to difficulties in achiev-
ing tight bounds on the WCET and WCRT using conventional analysis tech-
niques [42, 68, 13]. The complex systems also make it increasingly difficult to
ensure and prove that measurement-based and hybrid techniques provide valid
results [26], as the measurements need to be representative of the execution
times at run-time. These issues may lead to significant resource overprovi-
sioning when designing systems, alternatively a situation where there are no
guarantees that timing requirements can be met.

One path forward is an adaptive approach where the system has several
QoS levels. For the lowest QoS level, guarantees on timing requirements are
derived. Operation at higher QoS levels is permitted, as long as some run-time
constraints on timing requirements are fulfilled. For example, a robotic arm
may be designed to move slowly in an environment with moving obstacles,
but allowed to proceed quickly when the space is clear.

1.2 Probabilistic Timing Analysis

In many cases, probabilistic guarantees of distribution properties may be suf-
ficient, i.e., that the deadline miss probability is sufficiently small, or some
other requirement on the distribution of deadline misses that can guarantee the
QoS. In a recent survey of 120 industry practitioners in real-time systems [6],
only 15% answered that the most time-critical component in their systems can
never miss a deadline.

In probabilistic analysis, instead of considering one run of the program -
the one with the longest execution time - we consider a sequence of many runs
with feasible input values and initial hardware states. The scalar WCET - the
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upper bound of the worst-case execution time of runs - is replaced with a prob-
ability distribution, the probabilistic Worst-Case Execution Time (pWCET).
This name opens for misinterpretation, a more suitable name would be prob-
abilistic Execution Time Exceedance Bound. An illustration is given in Fig-
ure 1.1. The x-axis represents execution time, and for each execution time et,
0 ≤ et ≤ WCET , the distribution is an upper bound on the probability of
exceeding et for every valid scenario. A scenario is a sequence of executions
of the program that consists of a feasible repeated execution of the program.
While the WCET upper bounds all possible execution times for the program,
the pWCET upper bounds all possible execution time distributions for the pro-
gram for all valid scenarios. The pWCET upper bounds all execution time dis-
tributions as visualized in Figure 1.1, and using the definition of upper bound
from Davis and Cucu-Grosjean [26] based on Diaz et al. [28]:

Definition 1.2.1. The probability distribution of a random variable X is
greater than or equal to (i.e. upper bounds) that of another random variable
Y (denoted by X ≥ Y ) if the Cumulative Distribution Function (CDF)
of X is never above that of Y , FX(t) ≤ FY (t) for all t. Alternatively, X
is greater than or equal to Y if the 1-CDF of X is never below that of Y,
1− FX(t) ≥ 1− FY (t), for all t.

Many probabilistic analysis methods assume that execution times are inde-
pendent and identically distributed. For estimates of the tail of the probabilis-
tic Worst-Case Execution Times pWCET based on Extreme Value Theory, it is
sufficient that there is stationarity [36] or that extreme values of the distribution
are independent [61].

In many cases, such as in soft real-time systems, a picture of the entire
execution time distribution is useful. The pWCET distribution may be very
pessimistic in relation to average execution time distributions. An assumption
that execution times are independent and identically distributed, i.i.d., may not
always be valid. Frías et al. [31] have shown that in some robotics applications,
such as image processing for lane detection, a Markov Chain model of the
execution times is more appropriate. Here, within a part of the track, images
to be processed are similar to each other, which causes execution times to be
similar for these jobs.

A Markov Chain model may also be appropriate when the execution times
vary in a time-dependent manner due to other reasons than input varying with
some regularity. This can be for example due to a regular change in the internal
state of the program, or the system state being affected directly or indirectly
by other processes in a recurrent manner.
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0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Execution time

1-
C

D
F

Figure 1.1: 1-CDF of a program’s execution time under three scenarios are shown
in black, red, and green. The precise pWCET distribution as the tight upper bound
on these distributions is dashed, and an upper bounding pWCET is displayed in blue.
The figure is inspired by Figure 2 in [26].

1.3 Problem Formulation

It is a challenge to enable sufficiently accurate timing and schedulability anal-
ysis of today’s complex systems. Multicore [42] and mixed-criticality sys-
tems [68, 13], as well as fog and edge computing [64, 63, 22], require new
methods for ensuring sound timing and schedulability estimates along with
functional integrity and limited overprovisioning.

Measurement-based probabilistic timing analysis [14, 30, 32, 23] is a prac-
tical approach to estimating the pWCET distribution based on samples from
the tail of the distribution. This approach is safe given some assumptions are
fulfilled. Given that only extreme values from the tail are used to estimate the
pWCET, in many cases, this estimate will be pessimistic compared to common
scenarios. This is needed in safety-critical systems where standards require a
specific bound on the deadline miss probability. However, methods that con-
sider the entire timing distribution can allow for system design without exces-
sive overprovisioning. These kinds of approaches are of particular interest in
the case of soft real-time applications where requirements on QoS or QoC are
considered.

Timing and schedulability analysis of systems where execution time dis-
tributions change irregularly over time due to input or system state changes



Chapter 1. Introduction 7

is another challenge. Measurement-based probabilistic timing analysis based
on Extreme Value Theory requires that the sampled distribution is stationary
or that extreme values are independent [61]. In addition, measurement-based
analysis requires that the measurements used at analysis include observations
from the worst-case timing behavior of the system at run-time.





Chapter 2

Background and Related Work

In this section, background and related work are provided on real-time sys-
tems, Hidden Markov Models (HMMs) and probabilistic timing analysis.

2.1 Task Model

A task is a concept used to represent a piece of software - a program or a thread.
A task consists of one or more jobs. In this thesis the task model is periodic,
that is, the jobs ji of a task τ have arrival times ai separated by a period T .
The arrival time ai+1 of job ji+1 can be written as ai+1 = ai + T when we
assume no jitter in the arrival times.

2.2 Real-Time Systems

In a hard real-time system there is a requirement that no job misses its deadline.
In soft and firm real-time systems on the other hand, some deadlines can be
missed. The result of a job that missed its deadline is still useful in a soft real-
time system, although the result may be less valuable than a result delivered on
time. In a firm real-time system, a result delivered after a job’s deadline is of no
use [16]. The concept of weakly hard real-time systems has been introduced,
where bounds on the amount of missed and met deadlines during a window
of time are formally specified. [9]. In this thesis we are concerned with soft
real-time systems, although some of the methods derived may be useful also
in firm and weakly hard contexts.

9
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Figure 2.1: An example of a three state Markov Model with transition probabilities.

State S1

State S2

State S3

Job index 1 2 3 4 5 6 7 8 9 10

Figure 2.2: A possible state sequence from the Markov Model in Figure 2.1.

2.3 Hidden Markov Models

A Markov Model is a system characterized by a number of states and proba-
bilities for transitioning between the states. The current state depends only on
the state in the previous step and transition probabilities, not on events that oc-
curred earlier. This lack of memory is referred to as the Markov property. An
example of a three-state Markov Model with transition probabilities is shown
in Figure 2.1.

In a Hidden Markov Model (HMM), the model state is not directly ob-
served, instead we can observe an outcome that depends on the model state.
As an example, we assume that a task in a real-time system releases jobs se-
quentially. The task is associated with different states, that may be dependent
on the program state or interference from other tasks. Each state has a certain
probability distribution of execution times, that we refer to as the emission dis-
tribution. We can observe the sequential execution times of the task’s jobs, but
not the underlying states directly. One possible state sequence of the Markov
Model in Figure 2.1 can be the sequence shown in Figure 2.2. A possible exe-
cution time sequence associated with this state sequence is seen in Figure 2.3.
In this example each state is associated with a Gaussian emission distribution,
with mean and standard deviation of S1 as 20 and 2, of S2 as 30 and 3, and of
S3 as 40 and 4.

A tutorial on HMMs with some applications in speech recognition is [58].
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Figure 2.3: A possible execution time sequence from the state sequence in Figure 2.2.

2.4 Probabilistic Timing Analysis

A thorough overview of probabilistic timing analysis techniques is provided by
Davis and Cucu-Grosjean in [26]. A recent taxonomy and survey on Proba-
bilistic Worst-Case Execution Time analysis is provided by Cazorla et al. [17].

2.4.1 Static Probabilistic Timing Analysis

Work in this area applies static analysis tools on the code and a model of the
hardware timing behavior of the platform to obtain the pWCET distribution.
The majority of the work here considers models of set-associative and fully
associative random replacement caches. Quinones et al. [57] showed that for
some cases with programs displaying a cache risk pattern, random replace-
ment gives better results and lower variability over memory layouts compared
to Least Recently Used (LRU) replacement. Altmeyer et al. [7] provide an
analysis of randomized caches, considering reuse distance, associativity and
contention. They show that random replacement is preferable when the num-
ber of accessed memory blocks in a loop is larger than the cache associativity,
and LRU otherwise. Analysis using random replacement caches has been ex-
tended to the multi-path case [39, 38]. Chen and Beltrame [18] perform timing
analysis of a system with a random replacement cache by using an adaptive
Markov model. In addition to static probabilistic timing analysis with random
replacement caches, there is also work related to input and branch probabili-
ties, and probabilities of faults.

2.4.2 Measurement-Based Probabilistic Timing Analysis

Methods in this area estimate the pWCET by applying statistical techniques
to observations of execution time measurements. The theoretical basis is in
Extreme Value Theory (EVT).



12 2.5. Probabilistic Schedulability Analysis

Burns, Edgar, and Griffin initiated this research direction in several pa-
pers [14, 30, 32]. Measurement-Based Probabilistic Timing Analysis was
then introduced by Cucu-Grosjean et al. [23] in 2012, as a statistically sound
method based on Extreme Value Theory to estimate the pWCET from execu-
tion time measurements.

Santinelli et al. [61] point to earlier work by Leadbetter et al. [36] to show
that stationarity and extremal independence is sufficient for the application
of EVT and that independent and identically distributed observations are not
required.

2.5 Probabilistic Schedulability Analysis

A thorough overview of probabilistic schedulability analysis techniques is pro-
vided by Davis and Cucu-Grosjean in [25], accompanying the survey on tim-
ing analysis mentioned above.

2.5.1 Probabilistic Response Time Analysis

Probabilistic Response Time Analysis is used to calculate the response time
distribution of jobs, and in this manner estimate the probability of a deadline
miss.

Diaz et al. in 2002 [27] presented response time analysis for a system
with periodic tasks where random variables describe execution times. Here,
the worst-case processor utilization can exceed 1, since a backlog is consid-
ered at the end of the hyperperiod. They show that the backlog is a Markov
chain. In 2004 they also provided properties needed to achieve a safe over-
approximation [28].

Ivers and Ernst [34] in 2009 showed that when execution times are de-
pendent, it is not sufficient to use the per-program pWCET distributions in
convolution to obtain a safe over-estimate of the response time distribution.
Instead, they propose a method with probability boxes, bounding the response
time distribution in presence of unknown dependencies.

In 2013 Maxim and Cucu-Grosjean [50] proved that for fixed priority,
constrained deadline tasks and preemptive scheduling, and provided jobs are
aborted when their deadline is missed, the pWCRT distribution can be found
by synchronous release of the first jobs of each task. Here, execution times,
deadlines, and interarrival times are independent random variables.

Most work in this direction uses convolutions in the response time analysis.
The worst case computational complexity of a single discrete linear convolu-
tion is quadratic. Taking a reasonable number of tasks into account causes
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state explosion and tractability issues. Downsampling reduces the number
of values of the discrete distribution used in the calculations and improves
tractability at the expense of pessimism. Random sampling was proposed by
Refaat et al. [59]. Maxim et al. [52] compared downsampling by uniform spac-
ing, domain quantization and a downsampling method reducing pessimism.
Marković et al. [48] presented a method for optimal pessimism-minimizing
downsampling, and a downsampling algorithm by uniform spacing in the prob-
ability domain. Analytical bounds [19, 66] are more efficient compared to
convolution-based methods, but add more pessimism. Von der Brüggen et
al. have proposed methods for approximating deadline miss probabilities ef-
ficiently by using multinomial distributions [66]. The same group have pro-
posed a method for approximating the Worst Case Deadline Failure Probabil-
ity (WCDFP), that is an upper bound on the probability of any job of a task
to miss its deadline, considering dependencies among a bounded number of
jobs [67].

In 2021, Bozhko et al. applied Monte Carlo simulation to estimate the
WCDFP [10] for fixed-priority preemptive scheduling, execution times being
independent random variables.

2.5.2 Statistical Response Time Analysis

Similarly as in Measurement-Based Probabilistic Timing Analysis for pWCET
estimates, Extreme Value Theory, EVT, has also been applied in order to esti-
mate the response time distributions. The most important work in this line of
research has been performed by Lu et al. [46, 45, 43, 44]. Maxim et al. have
shown that the application of EVT gives sound over-estimates, where fitting
distributions to the observations directly does not [53].

2.5.3 Probabilistic Analysis of Server-based Systems

Abeni et al. have published a significant amount of work related to
server-based systems. In a server-based system, temporal isolation of tasks
is achieved by partitioning the processor resource. The Constant Bandwidth
Server (CBS) was introduced in 1998 [1], and probabilistic deadlines for
Quality of Service guarantees were introduced in 1999 [2], both by Abeni
and Buttazzo. The same group has considered execution times [3, 56] and
interarrival times [5, 47, 56] modeled with probability distributions.

Mills and Anderson [54] analyze sporadic tasks with stochastic execution
times under a server-based scheduler. Tardiness and response time bounds
are derived, considering dependencies within but not across time windows.
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Bounds grow with increased time windows. Liu, Mills and Anderson pro-
posed an alternative use of independence thresholds [41], where execution
times above a certain threshold are independent.

Frías et al. [31, 4] have published work regarding execution time models
for tasks where execution times display dependencies due to slowly changing
input data. They have shown that for a robotic image processing task in line
following, modeling execution times as a Hidden Markov Model is appropri-
ate. In this work, discrete emission distributions for the different states are
used. That is, each state is associated with a probability distribution of exe-
cution times, with a finite number of execution times/ number of clock cycles
having certain probabilities. The deadline miss probability under CBS is es-
timated for the Hidden Markov Model and compared to an i.i.d. case. The
calculated probabilities are compared to experimental results with CBS as im-
plemented in the Linux SCHED_DEADLINE scheduling policy. The experi-
ments show that with an i.i.d. assumption of execution times, the probability
of respecting the deadline is overestimated, i.e. the estimate is optimistic. The
estimates based on the identified Hidden Markov Model, on the other hand,
are very close to the experimental results. The software tool PROSIT has been
developed to enable these analysis methods [65].

2.5.4 Real-Time Queueing Theory

Real-Time Queueing Theory is an area where queue lengths and lead-times,
the remaining time until the deadline, are analyzed mathematically.
Lehozcky [37] introduced the concept in 1996, building upon work on
queuing theory that started in the 1950s. For systems with high utilization,
Real-Time Queueing Theory can be applied to calculate the lead-time process
for tasks in the queue under specific queueing/ scheduling policies. This
information can be used to calculate the deadline miss probability. The
work was mathematically formalized in 2001 [29]. Kruk et al. provided a
similar analysis for systems, where jobs are discarded when their deadline
is missed [35]. They show that Earliest Deadline First (EDF) scheduling
minimizes the amount of discarded work. The amount of missed deadlines
1-2 orders of magnitude lower when discarding work at deadlines given by
analysis and supported by simulations. In Real-Time Queueing Theory arrival
times, computation times and deadlines are independent random variables.

2.5.5 Probabilities from Faults

Schedulability analysis accounting for probabilities of faults and recovery
computations have been performed, this line of research was initiated
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by Burns [15]. There has been a significant amount of work-related
to faults and recovery in the context of the Controller Area Network
(CAN) [55, 11, 12, 24, 8].

2.5.6 Mixed-Criticality Systems

Some work has recently been done on applying probabilistic methods in the
analysis of Mixed-Criticality Systems, for example by Maxim et al. [51]. The
interest in this area is increasing.

2.6 Relation to the Work Presented in this Thesis

The work in this thesis builds particularly upon the work of Frías et al. [31, 4].
The discrete execution time distributions related to the states of the HMM in
this related work are replaced with continuous, Gaussian distributions in the
work presented in this thesis. The reasons for selecting this distribution are
mainly the efficient representation, simplicity and tractability. Due to these
factors it is likely better suited for adaptive approaches compared to a discrete
distribution. In our work, a more automated method for determining a suitable
number of states is provided. In addition, we present an adaptive approach, that
allows for incorporating irregular changes to the execution time distributions
into the model. We also propose a method for estimating the deadline miss
probability from a task described by an HMM with Gaussian execution time
distributions under CBS.





Chapter 3

Research Goals

The research goals are distilled from the problem formulation. This regards the
need for new practical approaches to timing analysis and the observation that
the entire execution time distribution is of interest for applications with QoS
or QoC concerns. It also includes the need to address systems where there can
be irregular changes in the execution time distribution due to changes in input
or system state, and that measurements used for analysis are not always fully
representative of the system at runtime.

The main research goal is to find new practical approaches to timing anal-
ysis in applications with QoS or QoC concerns, by modeling the entire exe-
cution time distribution using a suitable probabilistic framework and utilizing
this framework for schedulability analysis. More specifically, the individual
research goals are:

• RG1: To model the execution time distribution of a periodic task as an
HMM with continuous emission distributions and propose a method for
parameter identification for the HMM using execution time traces.

• RG2: To define a method for empirical validation of the task execution
time HMM, using execution time traces.

• RG3: To propose a method for the online update of the emission distri-
butions of the task execution time HMM to enable adaptive models in
dynamic systems.

• RG4: To estimate the deadline miss probability under reservation-based
scheduling of a periodic task with execution times modeled by an HMM
with continuous emission distributions.
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Chapter 4

Research Process and Methods

The main motivation of the work is to move towards practically useful timing
analysis for systems with QoS or QoC concerns. While probabilistic analysis
methods give a thorough theoretical underpinning to the work, the use of tim-
ing measurements from tasks running on real systems connects theory to the
real world.

An illustration of the research process is shown in Figure 4.1. The fig-
ure is adapted from Holz et al. [33]. A problem is identified and formulated.
The evaluation strategy is outlined, and data is collected and/ or generated.
The constructive step is based upon theoretical grounds from related work and
theoretical proofs in applicable cases. Collected data can be utilized in the
constructive step where methods are developed and models parameterized or
adapted, as well as in the evaluation step. Depending on the problem, evalu-
ation is performed with data from simulation, synthetic test programs on real
systems, realistic programs, or a triangulation using several of these alterna-
tives. The iterative nature of the process is shown, where the evaluation of the
research in relation to one research goal gives rise to new problem formulations
and research goals.

The basis of the research is a realist constructivist approach [21], where
knowledge is created in interaction with real-world observations.

Evaluation is performed as case studies, according to the steps outlined by
Runesson and Höst [60].

1. Case study design, definition of objectives, and planning of the case
study.

2. Preparation for data collection.

3. Collecting evidence.

19
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Problem formulation Evaluation strategy
Data collection/ Simulation

Method constructionEvaluation

Figure 4.1: The main steps of the research process.

4. Analysis of collected data.

5. Reporting.

The objectives of the evaluations depend on the problem in question. In
Paper A, a data consistency approach [40] is applied to evaluate the identi-
fied, parameterized model and compare data generated from the model with
data collected from synthetic test programs and a realistic program. In Pa-
per B simulated data is used in the evaluation, and the adapted distribution
is compared to the ground truth using the Kullback-Leibler divergence. For
evaluation of Paper C, triangulation is used with two different synthetic test
programs and simulation.

4.1 Threats to Validity

We consider the validity types discussed in Wohlin et al. [70], namely con-
struct validity, internal validity, external validity and reliability. Regarding
construct validity, concepts such as execution time and response time are well
defined and can be appropriately measured. It is worth noting that the validity
of predictions will need to be defined clearly, and be interpreted under given
conditions. On the matter of internal validity, there is a possibility that trac-
ing affects the execution time and response time measurement through cache
effects. This possibility needs to be taken into account when drawing conclu-
sions on causality. Theoretical proofs are provided for the method presented
in Paper C, under certain assumptions, and not in Paper A or B. The external
validity is limited to types of applications and platforms fulfilling the assump-
tions or utilized in the evaluations. Any generalizations need to be made with
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caution. By providing software with the papers, we increase the reliability of
our research. We increase the possibility for other researchers to apply the
methods, and also to spot weaknesses and errors.





Chapter 5

Thesis Contributions

In this section, the contributions and included papers are described. An
overview of the connections of the research goals to the papers, with an
illustration of the process, is provided in Figure 5.1.

5.1 Contributions

The thesis contributions are described here and mapped to the research goals
in Table 5.1.

• C1: A framework for model identification and validation of execution
time HMMs with continuous emission distribution models from exe-
cution time sequences, including automatically determining a suitable
number of states.

• C2: A method for online adaptation of execution time HMM emission
distributions from new timing measurements.

• C3: A method for estimating deadline miss probabilities for periodic
tasks with execution times modeled by HMMs with Gaussian emission
distributions, in a CBS.

C1: A Framework for Model Identification and Validation of Exe-
cution Time HMMs with Continuous Emission Distribution Mod-
els from Execution Time Sequences, Including Automatically De-
termining a Suitable Number of States.

As a first step, we evaluate the validity of a HMM with continuous, Gaussian
emission distributions. This contribution is provided in Paper A. A framework
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RG1

RG2

Paper A

RG3 Paper B

RG4 Paper C
Leading to

Inspired by

Figure 5.1: Illustration of the connection between research goals and papers.

Table 5.1: Contributions C1 through C3 address research goals RG1 through RG4 in
this way.

RG1 RG2 RG3 RG4
C1 X X
C2 X
C3 X

for identification of a HMM with Gaussian emission distributions from execu-
tion time traces is presented, in order to model the execution times of a peri-
odic task. This includes automatically determining a suitable number of states
with a tree-based cross-validation approach [62]. The identified HMMs are
validated using a data consistency approach [40], where data generated from
the identified model are compared with timing traces using a dispersion based
statistic. For the evaluated cases, a simple test program with a known Markov
chain structure and a video compression test case, we show that the identified
HMMs are valid models with respect to the timing trace observations. This re-
inforces conclusions from previous work that HMMs can be valid models for
execution times [31, 4], and extends it to continuous emission distributions.
Source code and data are available1. Preliminary tests show that the identified
model in the video decompression test case is not valid for different video in-

1https://github.com/annafriebe/MarkovChainETFramework
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put. This is consistent with results from [31, 4] that indicate that different input
give rise to different HMMs and tasks with different resource requirements.

C2: A Method for Online Adaptation of Execution Time HMM
Emission Distributions from new Timing Measurements.

As indicated in Paper A and previously in [31, 4], different input can give rise
to different HMMs. This is likely also the case with other causes of irregular
variation in the execution times, such as for example some interference from
other processes. Since the methods for identification of the HMMs are not
suited for runtime purposes, we propose online adaptation of the emission dis-
tributions as outlined in Paper B. We assume that the number of states and the
transition probabilities are not changing. We also assume that the emission dis-
tributions change at some time points, but remain the same in segments of the
execution time sequence between those points of change. Segments can have
the same or similar emission distributions, and in this case they are combined
into a cluster. The number of states and the transition matrix are identified in
a preprocessing step, along with a number of segments and clusters of a pre-
processing part of the execution time sequence. In an adaptive process, points
of model change are detected, and new segments are identified. New segments
are determined to be part of an existing cluster or starting a new cluster. A
Bayesian approach is used to model the probability distribution of the mean
and variance of each segment. From the Bayesian model a Generalized Like-
lihood Ratio (GLR) is defined, that gives the probability that the observations
of two segments or clusters belong to a joint distribution as opposed to dis-
tinct distributions. This GLR measure is central and used to find the points
of model change and to combine segments into clusters in both the prepro-
cessing step and the adaptive process. The evaluation in Paper B is performed
with synthetic data. This gives us a ground truth distribution that can be used
for comparison with the posterior predictive distribution. It also ensures that
the assumptions are met - that the number of states and the transition matrix
remain the same, and that the emission distributions of the states change at cer-
tain points in time. The comparison is performed by calculating the Kullback-
Leibler (KL) divergence from the estimated posterior predictive distribution to
the ground truth distribution. Source code and data are available2.

2https://github.com/annafriebe/AdaptiveETBayes
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C3: A Method for Estimating Deadline Miss Probabilities for Peri-
odic Tasks with Execution Times Modeled by HMMs with Gaussian
Emission Distributions, in a CBS.

We want to use the identified HMM of the execution times to estimate the
workload distribution and deadline miss probabilities. These estimates are
needed for schedulability analysis, and for decisions on resource assignments
and adaptation. Therefore we propose a method for estimating the deadline
miss probabilities for these tasks in a CBS, as described in Paper C. In the pro-
posed method, a workload accumulation scheme is considered from a point of
workload depletion up until a certain number of task periods, N . The deadline
miss probability along each workload accumulation sequence up until length
N is upper bounded, and the probability of taking each of these is also up-
per bounded. Along with an upper bound of the probability of accumulation
sequences longer than N , a bound on the deadline miss probability is con-
structed. As an alternative to bounding the probability of longer accumulation
sequences, a method for estimating this is provided. Workload accumulation
sequences with the same number of visits in all states are combined, thus re-
ducing the complexity. The number of task periods included,N is increased up
until a maximum number, or until the workload depletion bounds deteriorate.
Accumulation sequences are used to estimate the the deadline miss probabil-
ities of each state and overall. Theoretical proofs are provided that an upper
bound of the deadline miss probability is obtained in the case of Gaussian
emission distributions, and with a bound on the probability of carrying over
workload into the second period of workload accumulation.

Evaluation is performed for two simple test programs with the same tran-
sition probabilities, one with Gaussian emission distributions and one with
exponential emission distributions. Timing traces are retrieved and used for
estimating means and standard deviations of the Gaussian emission distribu-
tion of the model. The transition probabilities are known. The deadline miss
probability bounds and estimates are compared with simulation and with the
deadline miss ratio when running the program in the Linux CBS implementa-
tion. The bound adds significant pessimism compared to the estimates. In all
cases with Gaussian emission distributions, the estimates also upper bound the
results from simulation and experiments. The bounds and estimates are tighter
for the state with the highest deadline miss probability, and tighter for cases
with lower utilization and shorter relative deadlines. In one evaluated test case
with exponential distributions, the resulting estimate is optimistic for the state
with the highest deadline miss probability. The overall deadline miss prob-
ability estimate still upper bounds the result of simulation and experiments.
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Source code and data will be made available upon acceptance of the paper.

5.2 Overview of Included Papers

In this section, abstracts and contributions of the papers included in the thesis
are listed. The papers are mapped to the contributions in Table 5.2.

Table 5.2: Papers A through C align with contributions C1 through C3 in this way.

C1 C2 C3
Paper A X
Paper B X
Paper C X

5.2.1 Paper A

Title: Identification and Validation of Markov Models with Continuous
Emission Distributions for Execution Times
Authors: Anna Friebe, Alessandro V. Papadopoulos, and Thomas Nolte
Status: Published at RTCSA 2020.
Abstract: It has been shown that in some robotic applications, where
the execution times cannot be assumed to be independent and identically
distributed, a Markov Chain with discrete emission distributions can be an
appropriate model. In this paper, we investigate whether execution times
can be modeled as a Markov Chain with continuous Gaussian emission
distributions. The main advantage of this approach is that the concept
of distance is naturally incorporated. We propose a framework based on
Hidden Markov Model (HMM) methods that 1) identifies the number
of states in the Markov Model from observations and fits the Markov
Model to observations, and 2) validates the proposed model with respect to
observations. Specifically, we apply a tree-based cross-validation approach
to automatically find a suitable number of states in the Markov model. The
estimated models are validated against observations, using a data consistency
approach based on log-likelihood distributions under the proposed model.
The framework is evaluated using two test cases executed on a Raspberry
Pi Model 3B+ single-board computer running Arch Linux ARM patched
with PREEMPT_RT. The first is a simple test program where execution
times intentionally vary according to a Markov model, and the second is a
video decompression using the ffmpeg program. The results show that in
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these cases the framework identifies Markov Chains with Gaussian emission
distributions that are valid models with respect to the observations.
Personal Contributions I have been the main author and driver of the work.
Planning of the paper and evaluation has been performed jointly with the
co-authors. I have developed the software, performed experiments and
written the manuscript draft that has been improved in collaboration with the
co-authors.

5.2.2 Paper B

Title: Adaptive Runtime Estimate of Task Execution Times using Bayesian
Modeling
Authors: Anna Friebe, Filip Marković, Alessandro V. Papadopoulos, and
Thomas Nolte
Status: Published at RTCSA 2021.
Abstract: In the recent works that analyzed execution-time variation of
real-time tasks, it was shown that such variation may conform to regular
behavior. This regularity may arise from multiple sources, e.g., due to
periodic changes in hardware or program state, program structure, inter-task
dependence, or inter-task interference. Such complexity can be better
captured by a Markov Model, compared to the common approach of assuming
independent and identically distributed random variables. However, despite
the regularity that may be described with a Markov model, over time, the
execution times may change, due to irregular changes in input, hardware state,
or program state. In this paper, we propose a Bayesian approach to adapt the
emission distributions of the Markov Model at runtime, in order to account for
such irregular variation. A preprocessing step determines the number of states
and the transition matrix of the Markov Model from a portion of the execution
time sequence. In the preprocessing step, segments of the execution time trace
with similar properties are identified and combined into clusters. At runtime,
the proposed method switches between these clusters based on a Generalized
Likelihood Ratio (GLR). Using a Bayesian approach, clusters are updated and
emission distributions estimated. New clusters can be identified and clusters
can be merged at runtime. The time complexity of the online step is O(Nˆ2 +
NC) where N is the number of states in the Hidden Markov Model (HMM)
that is fixed after the preprocessing step, and C is the number of clusters.
Personal Contributions: I have been the main author and driver of the work.
Planning of the paper and evaluation has been performed with the co-authors.
I have developed the software, performed the experiments and written the
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draft of the paper that has been improved in collaboration with the co-authors.

5.2.3 Paper C

Title: Estimating Deadline Miss Probabilities of Continuous-Emission
Markov Chain Tasks.
Authors: Anna Friebe, Filip Marković, Alessandro V. Papadopoulos, and
Thomas Nolte
Status: Under review.
Abstract: Estimating the response times of real-time tasks and applications
is important for the analysis and implementation of real-time systems.
Probabilistic approaches have gained attention over the past decade, as they
provide a modeling framework that allows for less pessimism in the analysis
of real-time systems. Among the different proposed approaches, Markov
chains have been shown to be effective for the analysis of real-time systems,
in particular, in the estimate of the pending workload probability distribution
and of the deadline miss probability. However, this has been analyzed only
for discrete emission distributions, but not for continuous ones. In this paper,
we propose a method for analyzing the workload probability distribution and
bounding the deadline miss probability for a task executing in a Constant
Bandwidth Server, where execution times are described by a Markov model
with Gaussian emission distributions. In the evaluation, deadline miss
probability bounds and estimates are derived with a workload accumulation
scheme. The results are compared to simulation and measured deadline miss
ratios from tasks under the Linux Constant Bandwidth Server implementation
SCHED_DEADLINE.
Personal Contributions: I have been the main author and driver of the work.
Planning of the paper and evaluation has been performed jointly with the
co-authors. I have provided the proofs, developed the software, performed
the evaluation and written the draft of the paper that has been improved in
collaboration with the co-authors.
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Conclusions and Future Work

The main research goal is to find new practical approaches to timing analysis
in applications with QoS or QoC concerns, by modeling the entire execution
time distribution using a suitable probabilistic framework and utilizing this
framework for schedulability analysis.

We have shown that an HMM with Gaussian emission distributions is suit-
able for modeling the execution times of certain tasks with regular execution
time variation, such as a video decompression task. We have proposed a
method for estimating the deadline miss probability of such an HMM and a
method for runtime adaptation of the emission distributions. The work pre-
sented in this thesis provides a step towards the use of HMMs with Gaussian
emission distributions to approximate the deadline miss probability in adap-
tive real-time systems. It should be noted that some links in the chain are not
complete in the work presented in this thesis. The posterior emission distri-
butions from the adaptive method are not Gaussian distributions, but Student’s
t-distributions. Thus it is not suitable for feeding directly into the method for
deadline miss estimate. The deadline miss estimate does not take into account
emission distributions that change during the accumulation sequence. On the
contrary, the main idea relies on emission distributions that remain the same
for each state. Thus, the methods proposed in this thesis need to be comple-
mented. One way to close this gap could be to estimate a Gaussian distribution
from the Normal-Gamma distributions during the accumulation sequence, that
with a sufficient probability overestimates the resulting deadline miss proba-
bility.

There is some need for further development of the methods. In particular,
regularization should be introduced in the adaptive method to avoid excessive
growth of the estimated variance when states’ emission distributions are close
to each other.
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More extensive evaluation of the methods for realistic use cases should be
performed. The hypothesis that continuous distributions are more robust with
a small number of observations compared to discrete distributions needs to be
tested.
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Abstract

It has been shown that in some robotic applications, where the execution times
cannot be assumed to be independent and identically distributed, a Markov
Chain with discrete emission distributions can be an appropriate model. In this
paper we investigate whether execution times can be modeled as a Markov
Chain with continuous Gaussian emission distributions. The main advan-
tage of this approach is that the concept of distance is naturally incorporated.
We propose a framework based on Hidden Markov Model (HMM) methods
that 1) identifies the number of states in the Markov Model from observa-
tions and fits the Markov Model to observations, and 2) validates the proposed
model with respect to observations. Specifically, we apply a tree-based cross-
validation approach to automatically find a suitable number of states in the
Markov model. The estimated models are validated against observations, us-
ing a data consistency approach based on log likelihood distributions under the
proposed model. The framework is evaluated using two test cases executed on
a Raspberry Pi Model 3B+ single-board computer running Arch Linux ARM
patched with PREEMPT_RT. The first is a simple test program where execu-
tion times intentionally vary according to a Markov model, and the second is
a video decompression using the ffmpeg program. The results show that in
these cases the framework identifies Markov Chains with Gaussian emission
distributions that are valid models with respect to the observations.



Paper A 45

7.1 Introduction

In real-time systems requirements on timing properties must be considered, in
addition to functional requirements, i.e., it is of importance to have the correct
behavior at the appropriate time. Real-time requirements range from safety
critical timing requirements of hard real-time systems found in applications of
aeronautics, automotive and medical device systems to soft real-time systems,
e.g., common in multimedia applications. Failure to meet hard real-time re-
quirements may result in a disaster and/or loss of human life whereas failure
to meet a soft real-time requirement can cause a deterioration of the Quality of
Service (QoS) [11] such as in a video playback or affect the Quality of Control
(QoC) [34] of a robot’s motion planning.

It is a challenge to enable sufficiently accurate timing analysis of today’s
complex systems. Multicore processors [28] and mixed-criticality systems [7,
43], as well as fog and edge computing capabilities [41, 40, 12], require new
methods for ensuring sound timing estimates along with functional integrity
and limited over-provisioning of computational resources and bandwidth for
communication. Practical timing analysis methods that consider the entire tim-
ing distribution, as opposed to only the tail of the distribution, can allow for
system design without excessive over-provisioning. Taking the entire distribu-
tion into account is of particular interest primarily in the case of soft real-time
applications where requirements on QoS or QoC are considered.

Frías et al. have shown that computation times of a computer vision ap-
plication in a robotic system can be described as a Markov Model [20, 4].
Inspired by the work of Frías et al., in this paper we investigate the follow-
ing research question: How can the execution time distribution of a task be
faithfully modeled in a probabilistic framework? In particular:

1. Can execution time distributions be suitably modeled as a Markov
Chain, where each state is associated with a Gaussian emission
distribution?

2. How can one estimate the model parameters from timing measurements
of the task’s jobs?

Our main motivation for exploring continuous emission distributions is
that they naturally include a concept of distance. Two execution time mea-
surements that are similar are more likely to originate from the same state,
compared to measurements of different magnitude. In the standard methods
for Markov models with discrete emission distributions, each execution time
value is treated as a label and the distance information is lost. By using con-
tinuous distributions, a model likely to provide a reasonable estimate from a
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smaller amount of observations. Although each execution time is a discrete
number of clock cycles, realistic tasks on today’s processors often result in a
large number of possible values, that can be closely approximated by a contin-
uous distribution. In order to develop methods that can be of practical use in
schedulability analysis, we estimate model parameters from observations.

In this paper, we present an automated framework that estimates and val-
idates an execution time distribution model from observations. The proposed
model is a Markov Model with a Gaussian emission distribution associated
with each state. More precisely, we propose an HMM, as we observe the ex-
ecution times, but the states cannot be directly observed. Firstly, in step 1 we
identify the number of states for the HMM, and fit the model to the obser-
vations. A tree-based cross-validation approach [39] is adopted for identify-
ing the number of states. We estimate the parameters for the Gaussian distri-
butions and the transition matrix by applying the Expectation-Maximization
algorithm [35], initialized with values resulting from the tree-based cross-
validation. In step 2 we validate the estimated model using observations. Here,
we adopt a data consistency approach [27], and derive methods for application
of this approach to Markov Chains using outputs from the Forward-backward
algorithm.

A set of probabilistic techniques are selected and combined in the frame-
work, to enable identification and validation of the HMM. The methods are
applied to two test cases, a test program with a known Markov Chain behav-
ior, and a video decompression program treated as a black box. The results
are presented and discussed. Further investigation is needed to evaluate the
applications where the framework and the specific techniques of each step are
most suitable, and for what applications other techniques are better for one or
several of the proposed steps.

The rest of the paper is structured as follows. Section 7.2 presents the re-
lated work, followed by Section 7.3 that presents the task model. Section 7.4
presents the proposed framework. Sections 7.5 and 7.6 discuss the experimen-
tal results, Finally, Section 7.7 concludes the paper and highlight directions for
future work.

7.2 Related Work

Cucu-Grosjean and Davis have recently provided thorough surveys of the lit-
erature on probabilistic methods in Timing Analysis [15], Response Time
Analysis, analysis of server-based systems, Real-Time Queuing Theory, sys-
tem analysis with fault modeling and Mixed Criticality Systems [14]. Cazorla
et al. provide a taxonomy and a survey on the methods used in Probabilistic
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Worst-Case Execution Time Analysis [9]. The authors also emphasize the fact
that while measurement-based approaches may allow analysis of a black-box
system, the results are only reliable if the analysis data are representative with
respect to the operational environment. That is, all sources of variation in exe-
cution times or latencies that are relevant for the result need to be contributing
to the variation in the data. Otherwise their effects need to be upper-bounded
or accounted for in other ways.

In the area of static probabilistic timing analysis, many works consider
models for set-associative or fully associative caches. Quinones et al. [37]
showed that for some cases with programs displaying a cache risk pattern,
random replacement gives better results and lower variability compared to
Least Recently Used (LRU) replacement. Altmeyer et al. [6] provide anal-
ysis considering reuse distance, associativity and contention. Analysis using
random replacement caches has been extended to the multi-path case [26, 25].
Chen and Beltrame [10] perform timing analysis for single-path programs on
systems with evict-on-miss random replacement caches by using an adaptive
Markov model.

Measurement-Based Probabilistic Timing Analysis methods estimate the
pWCET by applying statistical techniques to observations of execution time
measurements. While WCET is a scalar value – the upper bound of the worst
case execution time of runs – the pWCET is a probability distribution repre-
senting the upper bound on the probability of exceeding each execution time
value in valid scenarios of repeated runs of the program. The theoretical ba-
sis is in Extreme Value Theory (EVT). The first work in this direction was by
Burns, Edgar and Griffin [8, 19, 21]. Measurement-Based Probabilistic Timing
Analysis was then introduced by Cucu-Grosjean et al. [13] in 2012.

Probabilistic Response Time Analysis is used to calculate the response
time distribution of jobs, and in this manner estimate the probability of a
deadline miss. Diaz et al. [16] presented response time analysis for a system
with periodic tasks where random variables describe execution times. Here,
the worst-case processor utilisation can exceed 1, since a backlog is consid-
ered at the end of the hyperperiod. They show that the backlog is a Markov
chain. In [17] they also provided properties needed to achieve a safe over-
approximation. More recent, the system model was extended by Kaczynski et
al. [22] to also allow for systems with aperiodic tasks.

Similarly as in Measurement-Based Probabilistic Timing Analysis for
pWCET estimates, EVT has also been applied in order to estimate response
time distributions. The majority of the work in this line of research, Statistical
Response Time Analysis, has been performed by Lu et al. [32, 31, 29, 30].

Real-Time Queueing Theory is an area where queue lengths and waiting
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times are analyzed mathematically. Lehozcky [24] introduced the concept in
1996, building upon work on queuing theory that started in the 1950s. Doytchi-
nov provided a mathematical formalization in [18].

Probabilistic analysis has also been applied in analysis of server-based
systems. Buttazzo and Abeni introduced the Constant Bandwidth Server
(CBS) [1], and probabilistic deadlines for Quality of Service guarantees [2].
The same group has considered execution times [3, 36] and interarrival
times [5, 33, 36] modeled with probability distributions.

Frías et al. [20, 4] have published work regarding execution time models
for tasks where execution times display dependencies due to slowly changing
input data. They have shown that for a robotic image processing task in line
following, modeling execution times as a Hidden Markov Model is appropri-
ate. In this work, discrete emission distributions for the different states are
used. The deadline miss probability under CBS/Earliest Deadline First (EDF)
is estimated for the Hidden Markov Model and compared to an assumption of
independent and identically distributed random variables. The calculated prob-
abilities are compared to experimental results with CBS/EDF as implemented
in the Linux SCHED_DEADLINE scheduling policy. The experiments show
that with an independent and identically distributed (i.i.d.) assumption of
execution times, the probability of respecting the deadline is overestimated,
i.e., the estimate is optimistic. The estimates based on the identified Hidden
Markov Model, on the other hand, are very close to the experimental results.

7.3 Task Model

In this paper, we consider a periodic task τ consisting of a sequence of periodic
jobs Ji, i ∈ N, with period T . Each job has an execution time ci ∈ R.

We model the execution time distribution of the task according to an
adapted version of the Markov Computation Time Model (MCTM) in Frías et
al. [20]. The model is described by the set {M,P, C}, where

• M = {m1,m2, . . . ,mN} is the set of N states, mn, n ∈ N.

• P is theN×N state transition matrix, where the element pa,b represents
the conditional probability P(Xi+1 = mb|Xi = ma) of being in state
mb at round i+ 1, given that at round i the state is ma.

• C = {C1, C2, . . . , CN} is the set of execution time distributions, or
emission distributions related to respective state. In this paper, these
are modelled as Gaussian distributions with mean µn, and variance σ2

n,
i.e., Cn ∼ N (µn, σ

2
n).
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7.4 Framework

In this section, we present and describe the framework that we have developed
for the identification and validation of the probabilistic model. Specifically,
the framework consists of the following steps:

1. Firstly, we apply the tree-based cross-validation approach [39] described
in Section 7.4.1 to identify the number of states in the HMM from the
observations. An HMM with the identified number of states is fitted to
the observations, according to the Expectation-Maximization [35] algo-
rithm, using the likelihoods obtained with the Forward-backward algo-
rithm [38]. The Gaussian distribution parameters and the transition ma-
trix used as a starting point for the optimization is given by the outputs
of the tree-based cross-validation.

2. Secondly, the obtained model is validated using a data consistency ap-
proach [27] described in Section 7.4.2. Here we derive expressions us-
ing outputs from the Forward-backward algorithm for application of the
data consistency model validation.

In the following subsections we describe these steps on model identification
and validation in more detail.

7.4.1 Tree-Based Cross-Validation

In general, the number of states N is not known a priori, and must be iden-
tified, for example based on logged data. In order to identify a number of
states Nopt that allows for capturing the execution sequence properties without
overfitting, a tree-based cross-validation approach is applied, as described in
Shinozaki [39]. The execution time sequence cs = {c1, c2, . . . , cNS} consist-
ing of execution times from NS ∈ N jobs, is split into M non-overlapping
folds csf with index f .

cs = ∪Mf=1csf

csf ∩ csg = ∅, f 6= g

For each fold with index f , we also define the complement cscf , the remaining
folds:

cscf = ∪f 6=gcsg

For each fold an MCTM with N > Nopt states is fitted to the remaining
folds cscf . The initial values of means and standard deviations for the emission
distributions are given by k-means clustering with k = N .
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The occupancy probability γni is the probability of being in state n at round
i, given the observation sequence csf , where ci ∈ csf and the model param-
eters retrieved from fitting to cscf . The occupancy probabilities for each state
index n and observation round i are calculated with the Viterbi algorithm [38].

Statistics containing all information from the sample needed for parameter
value estimates for a statistical model are sufficient for the parameter. By
calculating the sufficient statistics we can store the needed information from
a sample in a compact manner. Sufficient statistics for likelihood estimates
of a Markov chain model with Gaussian emission distribution are a0, a1 and
a2 [39]. These are calculated for each fold index f and state index n:

a0fn =
∑

i,ci∈csf

γni

a1fn =
∑

i,ci∈csf

ciγni

a2fn =
∑

i,ci∈csf

c2
i γni

For a set or cluster s of states, the maximum likelihood mean µ and vari-
ance ν for a fold index f can be calculated from the sufficient statistics from
remaining folds:

µfs =

∑
g 6=f

∑
mn∈s a1gn∑

g 6=f
∑

mn∈s a0gn
(7.1)

νfs =

∑
g 6=f

∑
mn∈s a2gn∑

g 6=f
∑

mn∈s a0gn
− µ2

fs (7.2)

These are then used to calculate a likelihood per fold index f and cluster s:

Lfs = −1

2
×∑

mn∈s

(
ln(2πνfs)a0fn +

a2fn − 2µfsa1fn + µ2
fsa0fn

νfs

)
(7.3)

The likelihood for a cluster is then calculated by summation of the likeli-
hoods of each fold index.

Ls =
M∑
f=1

Lfs (7.4)

A tree is created, and initially all states are placed in a cluster in the root
node. The cross validated likelihood is calculated for the tree consisting of
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only this cluster. Attempts are made to split the leaf nodes of the tree, so that
the node’s cluster is split into two clusters. The possible ways of splitting the
states in a tree node are:

1. 2-means clustering of 2D data points of mean and standard deviation of
each state is performed, and the resulting split is evaluated.

2. The states are ordered with respect to increasing mean, and each possible
split along the ordered states is evaluated.

3. The modes are ordered with respect to increasing standard deviation,
and each possible split along the ordered states is evaluated.

The split that gives the greatest increase in likelihood is selected. Nodes are
split as long as the cross validated likelihood of the subtree is increased by
the split, or until there is only one state in the tree node. The node splitting
process is a greedy algorithm that may lead to a local maximum. Pseudo code
is provided in Algorithm 7.1.

When a suitable number of states has been found, an MCTM with this
number of states is fitted to the execution time samples, starting from initial
values taken from the node clusters.

7.4.2 Data Consistency Model Validation

We evaluate whether the fitted model as described in Section 7.4.1,is valid,
with respect to observations. Thus, we generate samples from the model and
using a data consistency approach [27] we compare the generated samples to
observations. If the observed data is consistent with data generated from the
model, the model can be used in schedulability analysis.

The model validation can be performed with the same observations used
for the model estimate, to evaluate whether the model can capture the prop-
erties of the observations. The evaluation can also be performed with obser-
vations from other runs of the program, to evaluate whether the model and
parameters are valid in these cases, for different inputs or different hardware
states.

The data consistency approach we apply is described by Lindholm
et al. [27]. The log-likelihood under the proposed model is estimated for
samples generated from the model and for the observed samples. Using a
log-likelihood based statistic, an estimate is calculated of the probability of
generating the observed sample or a sample with higher dispersion, from the
evaluated model. This is equivalent to the probability that we reject the model
on the basis of the observed data being overdispersed, assuming that the data
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Algorithm 7.1 Pseudo code describing the tree cluster splitting process. The
likelihood increase for possible splits of a cluster are calculated using the pre-
computed sufficient statistics.

1: function TREECLUSTERSPLITTING(suffStats, N )
2: tree← createNode()
3: tree.states← [1 : N ] . Add all states to the root cluster
4: tree.[leftStates, rightStates, advantage] ←
calcSplitAdvantage(tree, suffStats) . Find the best split

5: while (tree.advantage > 0) and (nLeafNodes(tree) ≤ N) do . While
the likelihood increases, and we can split leaves

6: for node ∈ leaves(tree) do
7: if node.advantage > 0 then
8: node.leftChild← createNode() . Add new leaf nodes and

split the state cluster
9: node.leftChild.states← node.leftStates

10: node.rightChild← createNode()
11: node.rightChild.states← node.rightStates
12: node.states← ∅
13: end if
14: end for
15: for node ∈ leaves(tree) do
16: node.[leftStates, rightStates, advantage] ←

calcSplitAdvantage(node, suffStats) . Find the best split of the leaf
17: end for
18: for node ∈ tree; post− order do
19: node.advantage← maxAdvantageChildren(node) . Move the

highest likelihood increase to the root
20: end for
21: end while
22: return tree . Return the tree with Nopt leaf clusters
23: end function
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is generated from the model. Another way of describing it is that the model is
underdispersed compared with the observations. This probability of falsely
rejecting the model or Probability of False Alarm due to underdispersion
(PFAu) is similar to the p-value concept in hypothesis evaluation. While
the p-value is the probability of obtaining the test results or more extreme
values assuming the null hypothesis is correct, the PFAu is the probability
of obtaining data with at least the observed variability, assuming they are
generated from the proposed model.

We denote the observed execution times with an underline, as c.
In our case, we evaluate a single model with a probability distribution
p(c|M∗,P∗, C∗), whereM∗,P∗, C∗ are the parameters of the fitted MCTM.

Using the model, we generate trajectories denoted with tilde
c̃ ∼ p(c|M∗,P∗, C∗). Using c1:t to denote the samples at rounds 1 to t from
the trajectory, the conditional likelihood of an execution time measurement in
a trajectory under the model is:

pt = p(ct|c1:t−1,M∗,P∗, C∗) =
p(c1:t|M∗,P∗, C∗)
p(c1:t−1|M∗,P∗, C∗)

This can be calculated from the scaling factors resulting from the Forward-
backward algorithm. We denote these as scai. From Rabiner [38] we have the
probability of the observations expressed in terms of the scaling factors:

p(c1:t|M∗,P∗, C∗) =
1∏t

i=1 scai

From this it is clear that the conditional probability can be written as:

pt = p(ct|c1:t−1,M∗,P∗, C∗) =
1

scat

The conditional log-likelihood of a data point is:

zt , ln p(ct|c1:t−1,M∗,P∗, C∗) = − ln scat (7.5)

Conditional probabilities of outputs for each state separately can be esti-
mated using the transition matrix and the scaled forward variables α̂:

p(ct, Xt = j|c1:t−1,M∗,P∗, C∗)

= p(ct|Xt = j)
N∑
k=1

pk,jp(Xt−1 = k|c1:t−1,M∗,P∗, C∗)

=
1

σj
√

2π
e−

(ct−µj)2

2σ2

N∑
k=1

pk,jα̂k,t−1
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From Rabiner [38] we have that:

αk,t = p(c1:t, Xt = k|M∗,P∗, C∗)

α̂k,t = αk,t

t∏
i=1

scai =
p(c1:t, Xt = k|M∗,P∗, C∗)

p(c1:t|M∗,P∗, C∗)

= p(Xt = k|c1:t,M∗,P∗, C∗)

The conditional log-likelihood of each state and data point is:

zt,j , ln p(ct|Xt = j, c1:t−1,M∗,P∗, C∗)

= − lnσj −
ln 2π

2
− (ct − µj)2

2σ2
+ ln

N∑
k=1

pk,jα̂k,t−1 (7.6)

We denote the mean of the log-likelihood of data points in generated trajecto-
ries as E[z̃t] and the variance as Var[z̃t]. The test statistic T for a trajectory is
defined:

T (c;M∗,P∗, C∗) =
1

n

n∑
t=1

zt − E[z̃t]

Var[z̃t]
(7.7)

T statistics are defined similarly for each state by replacing zt with zt,j . S
is defined as the random event of a generated sample resulting in a higher T -
statistic than the observed one:

S(c̃, c) : T (c̃;M∗,P∗, C∗) > T (c;M∗,P∗, C∗)

When the probability of S, Pc̃|M∗,P∗,C∗(S(c̃, c)) is close to 0 or close to 1, it
indicates that the observed data is inconsistent with the proposed model.

Lindholm et al. define PFAu, the probability of falsely rejecting a model
due to under-dispersion of the generated log likelihoods as:

PFAu , Pc̃|M∗,P∗,C∗(S(c̃, c)) (7.8)

Lindholm et al. also define the probability of falsely rejecting the model due
to under- or overdispersion as:

PFA = min(PFAu, 1− PFAu)

However, in our work, we use PFAu, as an under-dispersion of data gen-
erated from the proposed model indicates that the model is optimistic with
regard to tail estimates. We note that values of PFAu that are close to 1 also
indicate model inconsistency, but that this relates to over-dispersion of data
generated from the model.

Pseudo code for the data consistency approach is given in Algorithm 7.2.
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Algorithm 7.2 Pseudo code describing the data consistency validation process.
1: function DATACONSISTENCYVALIDATION(M∗,P∗, C∗, c)
2: for i ∈ 1 : M ′ do
3: traj1← generateTraj(M∗,P∗, C∗,M ′, length(c))) . Generate M ′

trajectories of the same length as observations.
4: simZ1[i]← calcZ(traj1,M∗,P∗, C∗) . Calculate log likelihoods zt

and N zt,j for the samples as in Equations (7.5) and (7.6).
5: end for
6: EZ ← mean(simZ1) . Estimate E[zt] and N E[zt,j ] across M ′ values for

each round t.
7: V arZ ← var(simZ1) . Estimate Var[zt] and N Var[zt,j ] across M ′

values for each round t.
8: for i ∈ 1 : M do
9: traj2← generateTraj(M∗,P∗, C∗,M, length(c))) . Generate M

trajectories of the same length as observations.
10: simZ2[i]← calcZ(traj2,M∗,P∗, C∗) . Calculate log likelihoods zt

and N zt,j for the samples as in Equations (7.5) and (7.6).
11: Tsim[i]← calcT (simZ2, EZ, V arZ) . Calculate M × (N + 1) T s for

zt and zt,j as in Equation (7.7) from simulated trajectories.
12: end for
13: obsZ ← calcZ(c,M∗,P∗, C∗) . Calculate log likelihoods zt and N zt,j for

the samples as in Equations (7.5) and (7.6).
14: Tobs← calcT (obsZ,EZ, V arZ) . Calculate N + 1 T s for zt and zt,j as in

Equation (7.7) from observations.
15: PFAu ← count(Tsim > Tobs)/M . Estimate the probability of S for the

entire model and per state.
16: return PFAu

17: end function
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7.5 Evaluation

7.5.1 Test Setup

A Raspberry Pi 3B+ single board computer with quad-core 1.4 GHz
BCM2837B0 is utilized in the tests. Arch Linux ARM kernel 4.14.87 with
PREEMPT_RT patch 4.14.87-49 is configured with fully preemptible kernel
and timer frequency of 100Hz. The SD card low latency mode and dwc_otg
FIQ are disabled. A test program is pinned to a core that is isolated from
load-balancing and scheduling algorithms. The scaling governor is set to
performance for all cores and USB is disabled during the run. The program is
run in user space with FIFO scheduling and maximum priority. The ftrace
utility trace-cmd is used to log release (sched_wakeup) and scheduling
(sched_switch) events, and to generate trace reports with nanosecond
precision from the trace logs.

The model identification and validation framework is applied offline using
the recorded traces.

7.5.2 Implementation

The tree-based cross validation approach described in Section 7.4.1 and the
data consistency criterion model validation described in Section 7.4.2 are im-
plemented in R1, utilizing the R packages depmixS4 [42] and data.tree.
Evaluation code as well as test programs and scripts are available online 2.

Four folds are used for the cross validation. As described in Section 7.4.1,
the MCTM is fitted to three folds, and the sufficient statistics using the fit-
ted model are calculated for the remaining fold. The occupancy probabilities
are determined by application of the Viterbi algorithm. A new MCTM with
the number of states given by the tree-based cross validation is created, and
initialized with the means and variances from the clusters, as given in Equa-
tions (7.1) and (7.2) averaged over all folds. This model is then fitted to the
entire training set, and the fitted model is validated with the data consistency
criterion.

Values of the probability of false alarm due to underdispersion, PFAu,
are estimated for the entire model using zt as in Equation (7.5), and for each
state in the model using zt,j as in Equation (7.6). First, 100 trajectories are
generated for estimation of the mean and variance of the log likelihood. The
trajectories are generated using the simulate function in depmixS4, and log

1https://www.r-project.org/
2https://github.com/annafriebe/MarkovChainETFramework

https://www.r-project.org/
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likelihoods are retrieved from depmixS4’s forward and scaling variable re-
sulting from the Forward-backward algorithm. Second, 100 new trajectories
are generated for calculation of T values as given by Equation (7.7). Referring
to Algorithm 7.2, both M ′ and M are set to 100.

7.5.3 Markov Chain Test Program

In a first test, a program with a known Markov Chain behavior is evaluated.
The test program contains a state machine with three states. The program
keeps an array of 100 integers, initialized from a random uniform distribution
in the range [0, 4711]. It executes a job periodically at a 5ms interval. In the
job, a state transition is performed, given the following transition matrix:

P =

0.7 0.1 0.2
0.5 0.1 0.4
0.5 0.2 0.3

 (7.9)

Depending on the current state, elements in the array are increased with
43 and a modulo operation with 4711 is performed. The first state has the
shortest average execution time, the second state the middle and the third state
the longest average execution time.

Logs are created from 21 runs of the program, one is used for model param-
eter estimation, and 20 in the model evaluation. In each run, the task releases
10 000 jobs. A python script is used to calculate the execution time for each
job. The steady state is considered, so the logs from the first 250 jobs and the
last executed job instance are excluded. The execution times of the first 250
are slightly lower, due to the program always starting in state 1 and possibly
due to the system state. The last job’s execution time is much longer due to
produced status output before termination.

The execution time sequence used for estimating models is displayed in
Figure 7.1.

The tree based cross-validation approach is applied with 8 initial states
to the training execution time sequence. The fitted model has six remaining
states. The means and standard deviations of the states and PFAu values are
displayed in Table 7.1, and the estimated transition matrix is given by:

P =



0.51 0.18 0.08 0.02 0.19 0.007
0.45 0.27 0.05 0.04 0.18 0.005
0.36 0.14 0.07 0.047 0.38 0.005
0.31 0.18 0.07 3.7× 10−5 0.43 0.012
0.34 0.15 0.15 0.06 0.30 0.008
0.12 0.45 0.02 0.18 0.12 0.11

 (7.10)
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Figure 7.1: The execution time sequence from the Markov Chain Test program used
for estimating models. Times are given in nanoseconds.

Based on the means and standard deviations from Table 7.1, we can see
that states 1 and 2 represent the program state with the lowest mean execution
time, states 3 and 4 represent the middle program state and states 5 and 6
represent the highest program state and state 6 also some outliers. If we sum
the values of columns 1-2, 3-4 and 5-6 for each row in Equation (7.10), we see
that for rows 1-5 they sum up to values similar to the corresponding transition
probabilities in 7.9.

We see in Table 7.1 that the model is valid for all but one of the test se-
quences (test 8).

7.5.4 Video Decompression

A video is generated with images from the Tears of Steel open movie
project3. The video is created with ffmpeg from frames 5000–8999 of the
1080bis-png images4. The frame rate is set to 25 fps.

A trace is logged during decoding of the video with ffmpeg in native
frame rate. The sequence of execution times from the decoding is displayed
in Figure 7.2. We consider the steady state, therefore the first 250 and the

3https://mango.blender.org/
4https://media.xiph.org/tearsofsteel/tearsofsteel-1080bis-png/
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Table 7.1: State means and standard deviations (in nanoseconds) and corresponding
PFAu values for the model estimated from the training sequence.

State 1 2 3 4 5 6 All
mean 22240 22859 29652 30248 42185 41203 NA
stddev 222 420 221 409 383 9 190 NA
PFAu
test 1 0.22 0.21 0.18 0.18 0.94 0.44 0.31
test 2 0.52 0.49 0.33 0.33 0.14 0.56 0.87
test 3 0.38 0.37 0.24 0.24 0.43 0.05 0.02
test 4 0.28 0.27 0.19 0.18 0.53 0.20 0.19
test 5 0.36 0.36 0.22 0.22 0.42 0.22 0.24
test 6 0.14 0.14 0.12 0.14 0.75 0.10 0.06
test 7 0.26 0.26 0.18 0.18 0.67 0.38 0.19
test 8 0.00 0.00 0.01 0.01 0.58 0.00 0.00
test 9 0.58 0.58 0.43 0.39 0.01 0.44 0.89
test 10 0.55 0.53 0.42 0.40 0.02 0.62 0.92
test 11 0.27 0.26 0.19 0.20 0.76 0.24 0.17
test 12 0.43 0.43 0.29 0.26 0.04 0.31 0.41
test 13 0.48 0.47 0.25 0.23 0.03 0.31 0.50
test 14 0.74 0.73 0.50 0.46 0.01 0.69 0.99
test 15 0.28 0.28 0.19 0.20 0.58 0.31 0.14
test 16 0.29 0.28 0.21 0.21 0.41 0.14 0.56
test 17 0.37 0.37 0.21 0.21 0.09 0.13 0.76
test 18 0.36 0.36 0.24 0.23 0.37 0.12 0.41
test 19 0.28 0.28 0.21 0.21 0.53 0.59 0.61
test 20 0.19 0.20 0.18 0.19 0.81 0.16 0.11
train 0.40 0.39 0.28 0.26 0.45 0.48 0.94

last 50 execution time measurements have been discarded, as outliers are seen
on visual inspection. From the figures it is clear that the execution times are
separated in distinct groups, the lower with execution times below 0.15 ms,
accounting for approximately 57% of the samples, a slightly higher with exe-
cution times below 1 ms and a peak at around 0.45 ms, accounting for about
22% of the samples, a higher and more varying 10 ms accounting for approxi-
mately 19% of the samples, and the high with execution times above 22.5 ms
accounting for less than 2% of the samples. These groups are considered as
macrostates, and the transition probabilities between the states are displayed
in Figure 7.3. The execution time sequence has been separated outside of the
framework and the transition probabilities in Figure 7.3 are estimated directly
from the sequence. The framework analysis is applied to each of these groups
separately. The PFAu values are with respect to the sequence used for model
estimation.
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Figure 7.2

7.5.4.1 Macro state 1: Execution times below 0.15 ms

The execution times ci < 0.15 ms are extracted from the video decompression
log, resulting in a log of 10 538 samples. A Markov chain model is identified in
the first two steps of the framework - the tree based cross validation approach
described in Section 7.4.1, and fitting to the observations. The initial number
of states is 20, and the resulting Markov model has 13 states. The data con-
sistency criterion PFAu for each state and for the entire model is calculated
for the observations. The features and PFAu values for the model is given in
Table 7.2.

7.5.4.2 Macro state 2: Execution times in the range between 0.15 and 1
ms

The execution times 0.15 ≤ ci < 1 ms consist of 4165 samples. The tree-based
cross validation with 20 states in the initial Markov Model is applied and the
resulting Markov Chain has 13 states. The state means and standard deviations
of the estimated model, and the associated PFAu values, are displayed in
Table 7.3.
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Figure 7.3: Estimated transition probabilities between the macro states.

Table 7.2: State means and standard deviations (in nanoseconds) and corresponding
PFAu values with the estimated model for macrostate 1.

State 1 2 3 4 5 6 7
mean 70 662 76 370 10 082 10 671 10 920 15 954 43 703
stddev 15 236 2 360 230 640 578 2 585 1 069
PFAu 0.51 0.45 0.24 0.24 0.24 0.22 0.06

Table 7.2: State means and standard deviations (in nanoseconds) and corresponding
PFAu values with the estimated model for macrostate 1 (continued).

State 8 9 10 11 12 13 All
mean 54 343 28 470 12 927 31 295 62 083 39 794 NA
stddev 4 095 1 908 1 034 3 024 2 159 2 065 NA
PFAu 0.22 0.17 0.24 0.23 0.47 0.10 0.02

7.5.4.3 Macro state 3: Execution times in the range between 1 and 22.5
ms

The execution times 1 ≤ ci < 22.5 ms are 3598 samples. The tree-based cross
validation does not generally find a solution in this case - for many starting
values the depmixS4 fit function is unable to complete the expectation maxi-
mization step. Starting from 24 initial states, a solution with 14 states is found.
The state means and standard deviations and corresponding PFAu values for
the model are listed in Table 7.4.

7.5.4.4 Macro state 4: Execution times above 22.5 ms

346 observations from the execution time sequence belong in macro state 4,
ci ≥ 22.5 ms. The tree-based cross validation starting with 15 states identifies
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Table 7.3: State means and standard deviations (in nanoseconds) and corresponding
PFAu values with the estimated model for macrostate 2.

State 1 2 3 4 5 6 7
mean 465 766 418 676 252 165 446 819 552 131 530 612 399 345
stddev 9 790 9 832 13 083 4 442 33 902 5 549 3 868
PFAu 0.35 0.45 0.46 0.39 0.18 0.20 0.48

Table 7.3: State means and standard deviations (in nanoseconds) and corresponding
PFAu values with the estimated model for macrostate 2 (continued).

State 8 9 10 11 12 13 All
mean 773 326 681 703 481 032 301 732 586 839 452 460 NA
stddev 37 217 9 397 13 513 13 543 13 245 4 530 NA
PFAu 0.24 0.20 0.31 0.46 0.17 0.37 0.37

a model with 8 states. The state means and standard deviations and correspond-
ing PFAu values for the model estimated from the execution time sequence
are shown in Table 7.5.

7.6 Discussion

The evaluation allows us to conclude that a Hidden Markov Model with Gaus-
sian emission distributions can be appropriate to model execution time se-
quence data, and that the proposed framework can be used to identify and
validate such a model.

The analysis of the Markov Chain test program shows that the methods
can be used to estimate the number of modes, the transition matrix, means and
standard deviations to fit the model. While the test program is constructed to
display Markov Chain properties, we show that the execution time distribu-
tions in each state can be modeled by a combination of modes with Gaussian
emission distributions. Compared to the video decompression test, the pro-
gram has a simple structure and a small memory footprint.

We also note that a Hidden Markov Model with Gaussian emission distri-
butions appears to be valid in relation to the execution time sequences in the
video decompression test.

The depmixS4 methods used in the tree-based cross validation step are
somewhat sensitive to the initial number of states, and the step may fail if this
number is too large or too small. These methods can also fail if there are
significant gaps between the execution time values, which is why the video
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Table 7.4: State means and standard deviations (in nanoseconds) and corresponding
PFAu values with the estimated model for macrostate 3.

State 1 2 3 4 5 6 7
mean 12 146 116 9 907 489 9 408 568 11 763 973 8 753 004 13 172 000 13 071 808
stddev 237 788 253 316 284 388 481 965 306 717 328 076 636 583
PFAu 0.07 0.16 0.17 0.08 0.17 0.03 0.07

Table 7.4: State means and standard deviations (in nanoseconds) and corresponding
PFAu values with the estimated model for macrostate 3 (continued).

State 8 9 10 11 12 13 14 All
mean 11 726 350 15 321 999 10 722 598 10 652 123 8 223 196 10 074 260 11 246 543 NA
stddev 276 281 2 759 114 288 845 456 994 332 875 286 002 314 261 NA
PFAu 0.08 0.45 0.14 0.18 0.00 0.16 0.07 0.80

Table 7.5: State means and standard deviations (in nanoseconds) and corresponding
PFAu values with the estimated model for macrostate 4.

State 1 2 3 4 5 6 7 8 All
mean 22 979 652 22 881 488 23 863 163 22 786 818 22 733 574 23 365 667 23 094 934 23 198 326 NA
stddev 57 727 682 112 197 495 36 255 66 411 140 413 54 839 110 609 NA
PFAu 0.39 0.36 0.37 0.36 0.35 0.32 0.30 0.38 0.57

decompression sequence is separated into macrostates. The framework could
be expanded to manage separation into macrostates and find a suitable initial
number of states.

We also note that in some cases the number of states in the final models
vary significantly. The heuristic algorithm for splitting the nodes could be
adapted to evaluate a more exhaustive selection of possible splits, or replaced
by an optimization algorithm such as for example simulated annealing [23].

Due to randomization utilized in many of the methods within the frame-
work, different random seeds cause varying results. This is illustrated in Fig-
ure 7.4, where the Gaussian distributions of two models are visualized on top
of a normalized histogram of the sequence they are estimated from. The Gaus-
sian distributions are scaled with their respective stationary distribution prob-
abilities.

We have conducted preliminary tests with the validation step performed
with observations from running video decompression on another part of the
“Tears of Steel” movie, that indicate that the identified model is not valid in
this case. This may be due to input dependencies or cache related effects that
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Figure 7.4: Normalized histograms of execution times (in nanoseconds) of the execu-
tion time sequence of the Markov chain test program. Two different estimated mod-
els from different random seeds are visualized with the Gaussian distributions of the
states scaled with their respective stationary distribution probability, and their means
displayed as vertical lines. In (a) we see the six state model from Section 7.5.3, and
in (b) a five state model estimated with the framework applied to the same execution
time sequence but initialized with another random seed.
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cause the Gaussian distribution parameters and transition matrix to change over
time and between runs.

Chen and Beltrame [10] show that effects of a random replacement cache
can be described by an adaptive Markov Chain, and the ARM processor on the
Raspberry Pi applies a pseudo-random cache replacement policy. Our methods
derive a homogeneous Markov Chain, and if the model changes significantly
during the sequence used for model parameter estimation, the model will not
be valid, and this will be reflected in the resulting PFAu values.

Finally, we note that cache-related jitter in our evaluations may be exag-
gerated by the ftrace process running simultaneously.

7.7 Conclusion and Future Work

This work proposed a measurement-based framework for probabilistic mod-
eling of execution times of real-time applications. It presented an end-to-end
workflow that first identifies the structure of a Markov Chain model and fits
the probabilistic distributions to the collected execution time data, and finally
validates the obtained model on the collected data based on a data consistency
approach.

As with all measurement-based approaches, the application of this frame-
work requires that the observations used at analysis are representative of the
observations at runtime.

In order for the models to be useful in cases where full representativity of
the observations at analysis time is not realistic to achieve, the methods de-
scribed in this paper need to be complemented with (i) a method for providing
a safe over-approximation of the execution time distribution, and (ii) a method
for dynamically updating the model to reflect the effects on execution time
patterns due to changes in input, program state or hardware state.

It is worth noticing that the proposed framework presents a consistent com-
bination of different probabilistic tools, but it can include other techniques as
alternatives. For example, the approach proposed in [20] for the identification
of the Markov model can be used in the first step of the proposed framework, as
an alternative method. Further investigation on the tradeoffs among different
techniques is needed, and it is deferred to future work.

The framework could be further extended and automated, e.g., by specify-
ing required limits on the PFAu values. If these are too close to 0 or 1, one
can reject the model. Attempts can be made to identify new models in an itera-
tive manner, until we find a model that is not rejected, or we reach an iteration
limit and deem the proposed model not consistent with the observations.
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Finally, this paper focused on the single use case of video decompression.
Other use cases will be analyzed in the future to better understand and investi-
gate benefits and drawbacks of different probabilistic tools that can be included
in this framework.
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Abstract

In the recent works that analyzed execution-time variation of real-time tasks,
it was shown that such variation may conform to regular behavior. This regu-
larity may arise from multiple sources, e.g., due to periodic changes in hard-
ware or program state, program structure, inter-task dependence or inter-task
interference. Such complexity can be better captured by a Markov Model,
compared to the common approach of assuming independent and identically
distributed random variables. However, despite the regularity that may be de-
scribed with a Markov model, over time, the execution times may change,
due to irregular changes in input, hardware state, or program state. In this
paper, we propose a Bayesian approach to adapt the emission distributions of
the Markov Model at runtime, in order to account for such irregular varia-
tion. A preprocessing step determines the number of states and the transition
matrix of the Markov Model from a portion of the execution time sequence.
In the preprocessing step, segments of the execution time trace with similar
properties are identified and combined into clusters. At runtime, the proposed
method switches between these clusters based on a Generalized Likelihood
Ratio (GLR). Using a Bayesian approach, clusters are updated and emission
distributions estimated. New clusters can be identified and clusters can be
merged at runtime. The time complexity of the online step is O(Nˆ2 + NC)
where N is the number of states in the Hidden Markov Model (HMM) that is
fixed after the preprocessing step, and C is the number of clusters.
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8.1 Introduction

The characterization of the execution time of a real-time task is an impor-
tant step towards analyzing the schedulability of a real-time system. The
execution-time characterization usually focuses on the Worst-Case Execution
Time (WCET), allowing for the analysis of hard real-time guarantees (for more
details see [33, 17]). On the other hand, hardware acceleration features, multi-
core systems [20] and complex, interacting tasks, e.g., in mixed criticality sys-
tems [3, 32], pose several challenges in achieving tight bounds on the WCET
and Worst-Case Response-Time (WCRT) [17].

In the recent decades, probabilistic approaches have been proposed in re-
lation to execution time estimates. The main purpose of the probabilistic ap-
proaches is to derive a more realistic distribution of the execution-time values,
lowering upon the over-provisioning when one considers the worst-case val-
ues, while still considering Quality of Service (QoS) [6] or Quality of Control
(QoC) [26]. The majority of this work considers estimating the probabilis-
tic WCET (pWCET) distribution, that upper-bounds the execution time dis-
tributions of all valid scenarios and feasible sequences of repeated program
execution [9, 10, 5]. Measurement-based techniques based on Extreme Value
Theory (EVT) [4, 12, 15] require that extreme values of the execution time dis-
tribution are independent and that the measurements contain samples from the
worst case distribution [30, 18]. As an upper bound, the pWCET may still be
very pessimistic compared to the average execution time, and compared to the
upper bound of the execution time distributions of scenarios that are valid in
a more limited context of task execution that involves hardware and software
state as well as input.

In some cases the entire distribution may be relevant, and not only the up-
per bound based on the distribution’s tail. One such case is where QoS/ QoC
adaptation can be utilized. Tasks can allow for different QoS/ QoC levels as
proposed by Lu et al.[21]. In a robotic application, the robot’s speed can be
adjusted to allow for a lower frequency control loop. In these cases, the dead-
line miss probability can be kept sufficiently low with task adaptation. This
can also relax the requirement to capture samples from the most extreme con-
ditions in the analysis stage, provided the adaptation options are satisfactory.

In this paper, we address the problem of runtime estimation of execution-
time distribution, analyzing the execution trace of a task at runtime. More
specifically, in a preprocessing step, the number of states and the transition
matrix of the Hidden Markov Model (HMM) are derived from a portion of the
execution time sequence. Segments within this sequence that are similar are
identified. Here we use the Generalized Likelihood Ratio (GLR), a measure for
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the likelihood that the segments are generated from the same HMM. Similar
segments are combined into clusters, to form HMMs with differing emission
distributions. At runtime, the algorithm switches between these HMMs de-
pending on similarity with the current segment of the execution time trace.
New HMMs can be created and the emission distributions updated. The com-
plexity of the proposed runtime adaptive algorithm for the estimation of task
distributions is O(N2 + NC) where N is the number of states in the HMM
that is fixed after the preprocessing step, and C is the number of clusters. The
proposed approach has the potential for being used for the assessment of sev-
eral real-time system properties, but such an investigation is beyond the scope
of this work.

The remainder of this paper is organized as follows. Related work is out-
lined in Section 8.2. In Section 8.3, we describe the system-model assump-
tions, along with definitions and mathematical background used in the paper.
Then, in Section 8.4 we describe the derivation of the initial HMM in the
preprocessing step, which is followed by Section 8.5, the description of the
method for online model-parameter adaptation. The evaluation is described in
Section 8.6, and the paper is concluded in Section 8.7.

8.2 Related Work

Two major surveys on the Probabilistic Timing Analysis [9] and the Proba-
bilistic Schedulability Analysis [8] of real-time systems have been conducted
by Davis and Cucu-Grosjean, while a taxonomy and survey on pWCET anal-
ysis and associated methods was provided by Cazorla et al. [5]. We further
describe the state-of the art in measurement-based methods, where the contri-
butions of this paper fall into.

Measurement-Based Probabilistic Timing Analysis was introduced by
Cucu-Grosjean [7], based on previous work related to the use of Extreme
Value Theory (EVT) [4, 12, 15]. EVT is applied to find the pWCET, an
upper bound on the probability of exceeding each possible execution time
value. Methods based on EVT require that extreme values of the execution
time distribution are independent [30, 18]. EVT-based techniques have
also been applied in order to estimate upper bounds on response time
distributions [25, 24, 22, 23].

Moving from extreme values, and focusing on estimates of the full execu-
tion time distribution, the distribution of a visual task in a robotic application
has been modeled as a HMM with discrete emission distributions by Frías et
al. [1, 13]. HMMs can capture the regularity and dependability in the task
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execution, that may arise from different sources, e.g., sensed input, periodic
nature of task interactions, or the algorithms being used in the tasks.

Friebe et al. [14] proposed an approach to estimate the execution time dis-
tribution using HMMs with Gaussian emission distributions, and proposed an
automatic way of estimating the number of states in HMM from the execution
trace. The methods from [14] are utilized for HMM fitting in the preprocessing
step.

In all these approaches, the structure of the HMM and the emission distri-
butions are learned in an offline phase, based on existing logged data. How-
ever, although in the base case the execution times may be characterized with
a Markov Model, throughout the task’s life cycle the model accuracy may de-
teriorate due to different irregularities such as changes in input, hardware, or
program state. If the observations used for fitting the HMM are not fully rep-
resentative of the runtime observations, the model may also be inaccurate. In
Frías et al. [13], two separate experiments are performed, for a clean and a
noisy track respectively, and these give rise to two different Markov Models,
with notably different bandwidth requirements. In order to apply these meth-
ods for tasks where the context affecting the execution time distribution may
change, an adaptive approach is necessary. In this work, we assume that a
preprocessing phase is conducted where the HMM fitting is performed as in
previous work [14], but we propose a runtime Bayesian adaptation method to
continuously refine the execution time model based on the new observations.

Lu et al. [21] propose a Feedback Control Real-Time Scheduling (FCS)
architecture, including a Monitor, a Controller and a QoS Actuator. An adap-
tive estimate of the execution time distribution could allow for the Monitor to
predict the deadline miss probability rather than measuring the past deadline
miss ratio. To the best of our knowledge, no adaptive runtime estimates of
execution time distributions have previously been proposed.

In the proposed method, segments of the execution time trace are consid-
ered, and the similarity measure is defined considering the HMM as a whole.
An alternative could have been to consider each execution time sample sepa-
rately, and adapt and add states to a single HMM while updating the transition
matrix. This could be be achieved by considering novelty detection such as in
Gruhl et al. [16] in combination with a HMM update mechanism. We hypoth-
esize that the context affecting a task’s execution time distribution can change
suddenly, and that the task can be affected in a similar way in several seg-
ments during the execution. Therefore we have chosen to consider execution
time segments, and to enable switching betweeen clusters. In the proposed
Bayesian model, the emission distributions are Gaussian with unknown mean
and precision. An alternative could have been to model the emission distri-
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Notation Description
cs = (c1, c2, . . . , ct) Execution-time sequence

N Number of states in the Markov Model
M = {m1,m2, . . . ,mN} Set of Markov states

P N ×N state transition matrix
C = {C1, C2, . . . , CN} Set of execution-time distributions

sj Contiguous segment of cs
{µnj , σ2

nj} Mean and variance of state mn in segment sj
Sk = {sj , . . .} Cluster, set of segments

γni Occupancy probability of state mn in segment si
â[0]jn Estimated number of observations in state mn and segment sj
â[1]jn Estimated sum of observations in state mn and segment sj
â[2]jn Estimated sum of squared observations in state mn and segment sj
µ̂nk Estimated mean of state n and cluster Sk
ν̂nk Estimated variance of state n and cluster Sk

NG(µ, λ) Normal-Gamma distribution
µ0, κ0, α0, β0 Prior hyperparameters of NG
µL, κL, αL, βL Posterior hyperparameters of NG

D = (x1, . . . , xL) Observation sequence of length L
GLR(Sk, Sl) Generalized Likelihood Ratio between clusters Sk and Sl

`k Log-likelihood of cluster Sk
nPseudoObs Number of pseudo observations in prior construction

GP(m(x), k(x, x′)) Gaussian process with mean m and kernel k

Table 8.1: Important notation used in this work.

butions as Gaussian with unknown mean but fix the precision estimates in the
preprocessing step. Due to the risk of underestimating the variance and thus
the tail width, this option was not chosen.

8.3 System Model and Definitions

In this section, a task model with irregular execution-time variability is out-
lined. A Bayesian model for estimating the execution-time distribution from
observations is described. A measure of similarity, Generalized Likelihood
Ratio (GLR), for the Bayesian models is presented. This measure is used in
the preprocessing and adaptive steps to determine points where the execution-
time distribution changes, and to find similar segments of the execution-time
trace.

Notation. We denote sequences with parentheses, (), and sets with braces,
{}. The estimate of a quantity x is indicated in the following as x̂. Table 8.1
lists the main symbols used in the paper.
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8.3.1 Task Model

We consider a periodic task, that generates a sequence of jobs. The sequence
of execution times of the jobs is cs = (c1, c2, . . . , ct). We assume that the
execution-time sequence cs can be characterized by a Markov model, de-
scribed by the set {M,P, C}, where

• M = {m1,m2, . . . ,mN} is the set of N states, with mn, n ∈ N.

• P is theN×N state transition matrix, where the element pa,b represents
the conditional probability P(Xi+1 = mb|Xi = ma) of being in state
mb at round i+ 1, given that at round i the state is ma.

• C = {C1, C2, . . . , CN} is the set of execution-time distributions, or
emission distributions related to respective state. In this paper, these
are modeled as Gaussian distributions with mean µn, and variance σ2

n,
i.e., Cn ∼ N (µn, σ

2
n).

In the sequence cs, we assume that N and P remain unchanged, but at
a finite number of points in the sequence, referred to as points of cluster
change, the parameters {µn, σ2

n}may take new (different) values. For this pur-
pose we introduce another index, j, to explicitly indicate the dependency on
time. The parts of the sequence where {µn, σ2

n} remain constant are referred
to as segments sj . In each segment sj , the mean and variance are denoted
{µnj , σ2

nj}. A set Sk = {sj , . . .} of non-adjacent segments with the same
values of {µnj , σ2

nj} are referred to as a cluster. An illustration is shown in
Figure 8.1.
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Figure 8.1: An execution time sequence separated into six segments
(s1, s2, s3, s4, s5, s6) and four clusters (S1, S2, S3, S4), where S1 = {s1, s3},
S2 = {s2, s5}, S3 = {s4}, and S4 = {s6}.
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8.3.2 Estimating Sufficient Statistics

The Markov Model {M,P, C} can be estimated by the use of the Forward-
Backward algorithm [29] in combination with the Expectation Maximization
algorithm [27]. The number of statesN can be determined as described in Sec-
tion 8.4. Given this information and an execution time sequence or segment,
the state occupancy probabilities γni can be obtained for each state mn and
execution time observation csi using the Forward-Backward algorithm. The
occupancy probabilities are used to calculate sufficient statistics (presented
in [14, 31]) for each segment sj and state n. Sufficient statistics are a com-
pact way of storing the information needed to estimate the Gaussian emission
distribution of each state within the segment, and are also used when updating
the Bayesian model. The sufficient statistics for a Gaussian distribution are:
(i) â[0], an estimate of the number of observations in the state, (ii) â[1], an
estimate of the sum of the observations in the state, and (iii) â[2], an estimate
of the sum of the squared observations in the state.

â[0]jn =
∑
i,ci∈sj

γni, (8.1)

â[1]jn =
∑
i,ci∈sj

ciγni, (8.2)

â[2]jn =
∑
i,ci∈sj

c2
i γni. (8.3)

8.3.3 Bayesian Model

In a Bayesian approach, a conjugate distribution is a distribution where the pos-
terior probability p(Θ|D) of the parameter Θ given observations D, takes the
same functional form as the prior distribution p(Θ) [2]. For a Gaussian prob-
ability distribution with unknown mean µ and precision λ = 1/σ2, the conju-
gate distribution is a Normal-Gamma distribution [28], denoted as NG(µ, λ).
When we have a prior distribution of µ and λ as given by

p(µ, λ) = NG(µ, λ|µ0, κ0, α0, β0) ,

N (µ|µ0, (κ0λ)−1)Ga(λ|α0, rate = β0),
(8.4)

and observations D = (x1, . . . , xL), the posterior probability distribution can
be computed as:

p(µ, λ|D) = NG(µ, λ|µL, κL, αL, βL), (8.5)
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µL =
κ0µ0 +

∑L
i=1 xi

κ0 + L
, (8.6)

κL = κ0 + L, (8.7)

αL = α0 + L/2, (8.8)

βL = β0 +
1

2

(
L∑
i=1

(xi − x̄)2 +
κ0L(x̄− µ0)2

(κ0 + L)

)
. (8.9)

Given that we are not certain of which state each observation ci belongs
to, we rewrite Equations (8.6) to (8.9), using the sufficient statistics in Equa-
tions (8.1) to (8.3), yielding:

µL =
κ0µ0 + â[1]

κ0 + â[0]
, (8.10)

κL = κ0 + â[0], (8.11)

αL = α0 + â[0]/2, (8.12)

βL = β0 +
1

2

â[2]− â[1]2

â[0]
+
κ0â[0]( â[1]

â[0] − µ0)2

(κ0 + â[0])

 , (8.13)

where we excluded the indices j, n for readability, and we used â[0]jn to es-
timate L, â[1]jn to estimate Lx̄ and â[2]jn to estimate Lx̄2. Equations (8.10)
to (8.13) describe the Normal Gamma parameters for a state and segment.

The initial hyperparameters can be conceptualized as derived from a num-
ber of pseudo-observations, with the mean µ0 derived from κ0 observations
and the precision λ0 derived from 2α0 observations with mean µ0 and sum of
squared deviations 2β0.

Since the Normal-Gamma distribution is the conjugate distribution, seg-
ments can be added and the posterior hyperparameters updated incrementally
by substituting the existing posterior hyperparameters with the prior hyperpa-
rameters. In this way the posterior Normal-Gamma distribution for a cluster
is constructed by incrementally updating the hyperparameters for each seg-
ment in the cluster. Similarly, segments can be removed from the estimate by
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updating the hyperparameters according to:

µL =
κ0µ0 − â[1]

κ0 − â[0]
, (8.14)

κL = κ0 − â[0], (8.15)

αL = α0 − â[0]/2, (8.16)

βL = β0 −
1

2

â[2]− â[1]2

â[0]
+
κ0â[0]( â[1]

â[0] − µ0)2

(κ0 − â[0])

 . (8.17)

Note that the posterior predictive distribution for a single point prediction
is the Student’s t-distribution as described by Murphy [28]:

p(x|D) = t2αL

(
βL(κl + 1)

αLκL

)
. (8.18)

8.3.4 GLR Between Sets of Segments

The GLR of two sets of observations can be used to determine whether the sets
are likely to belong to a joint distribution or if it is more likely that they belong
to distinct distributions. This is done by calculating the ratio of the probability
of the observations under the joint model and the product of the probabilities
of the observations under distinct models. The GLR measure is central to the
proposed approach and used in the preprocessing as well as the adaptive step.

The GLR between two execution time segment sets Sk and Sl, and the
union of the sets given as Sk∪l, using log-likelihoods (indicated with `), is [19]:

GLR(Sk, Sl) = `k∪l − (`k + `l). (8.19)

The posterior predictive distribution for m new observations given the
Normal-Gamma prior is given in Murphy [28] as

p(Dnew|D) =
Γ(αn+m)

Γ(αn)

βαnn
β
αn+m
n+m

√
κn
κn+m

(2π)m/2. (8.20)

were Γ represents the gamma function.
We use the same prior distribution for the two segment sets and for the

union of the sets. Evaluating the posterior probability of the observations in
a state of a segment set Sk under the posterior predictive distribution calcu-
lated from the same observations gives the log-likelihood using estimates from
Equations (8.11) to (8.13) as:

`k = log Γ(α2k)− log Γ(αk) + αk log βk−

α2k log β2k +
1

2
(κk − κ2k) +

â[0]k
2

2π.
(8.21)
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The last terms cancel out in the GLR, and the resulting equation for two
segment sets and a state is:

GLR(Sk, Sl) = log Γ(α2(k∪l))− log Γ(α(k∪l) + αk∪l log βk∪l

− α2(k∪l) log β2(k∪l) +
1

2
(κk∪l − κ2(k∪l))

− log Γ(α2k) + log Γ(αk)− αk log βk

+ α2k log β2k −
1

2
(κk − κ2k)

− log Γ(α2l) + log Γ(αl)− αl log βl

+ α2l log β2l −
1

2
(κl − κ2l)

(8.22)

The GLR of two segment sets is estimated as the sum of the GLRs over
the states. We use GLRs based on log-likelihoods, so this is equivalent to
multiplication of the GLR measure as described by Liu and Kubala [19].

8.4 Preprocessing Step

The preprocessing step is performed on an execution time sequence where we
expect to capture the regular variation of execution times. The preprocessing
step identifies:

1. The number of states N and transition matrix P of the cluster HMMs.

2. The segments and clusters within this execution time sequence.

3. The sufficient statistics for the HMM states of each cluster.

A HMM is fitted to the execution time sequence, using the tree-based cross
validation approach described in [14]. This fitting process provides the number
of states and transision matrix.

The normal distribution parameters µ, σ in the HMM from the prepro-
cessing step are used in combination with a number of pseudo observations,
nPseudoObs, to create initial prior Normal-Gamma distributions as:

µ0 = µ, (8.23)

κ0 = nPseudoObs, (8.24)

α0 =
nPseudoObs

2
, (8.25)

β0 = α0 · σ2. (8.26)

The number nPseudoObs is chosen for each state in relation to the stationary
probability of the state.
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8.4.1 Finding Points of Cluster Change

For a sequence of execution time observations, we want to find the set of points
where the model parameters change.

8.4.1.1 Finding One Point of Model Change

Initially, we consider the simpler problem of finding one point of model change
in a sequence. Given a starting index xstart and a stopping index xstop within
the sequence, we aim to find the index xsplit that minimizes the GLR(x),
defined as

GLR(x) = GLR({sx−}, {sx+}) (8.27)

sx− = (cxstart , cxstart+1, . . . , cx) (8.28)

sx+ = (cx+1, cxsplit+1, . . . , cxstop) (8.29)

xsplit = arg min
x

GLR(x) (8.30)

where the segments sx− and sx+ indicate the segments before and after x.
The optimization is performed Bayesian Optimization as implemented in the
Python library GpyOpt1, where BayesianOptimization is configured with a Ra-
dial Basis Function kernel and Expected Improvement as acquisition function.
Posterior predictive Student’s t-distributions are derived for sx−, sx− and for
their union. The log-likelihoods for these segments are calculated by apply-
ing the Forward-Backward algorithm. The transition matrix P in taken from
the fitted HMM, but the posterior predictive distributions are used as emission
distributions.

If the resulting GLR(xsplit) is lower than a given GLRlimit, xsplit is con-
sidered to be a point of model change.

8.4.1.2 Finding Several Points of Model Change

In order to find several points of model change within an execution time se-
quence cs, we apply the method described in Section 8.4.1.1 for the entire
sequence, xstart = 1, xstop = t. Recursively, the method is applied for the
sequences with xstart = 1, xstop = xsplit and xstart = xsplit + 1, xstop = t,
and further, similarly to a binary search approach, until one of the following
stopping criteria are met:

1. The resulting GLR(xsplit) is above the given GLRlimit;

1https://sheffieldml.github.io/GPyOpt/
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2. The length of the subsequence is below a minimum length between split-
ting points.

8.4.2 Segment Clustering

The segments are clustered into sets using an approach similar to the Leader-
Follower Clustering described by Duda et al. [11]. The longest segment is
added as the first cluster. For each segment, in order of decreasing segment
length, the cluster that gives the maximum GLR is found as outlined in Sec-
tion 8.3.4. If the GLR between the segment and the closest cluster is large
enough, the segment is merged into the cluster, otherwise a new cluster is cre-
ated. The threshold has been set to 10 times the threshold used in finding the
points of model change.

8.5 Online Model Adaptation

In the runtime process, a sliding window is considered. A simplified flowchart
of the algorithm is available in Figure 8.2.

The sliding window has a length of T = a · step. Here, a and step are
integers, and step is the size of the sliding window movement at each step.
We assume that a starting cluster at the beginning of the window is known.
The sliding window hyperparameters are estimated by calculating the posterior
distribution using Equations (8.10) to (8.13) with the initial prior distribution.
Sufficient statistics â[0], â[1] and â[2] are derived using the Forward-Backward
algorithm [29]. The emission distributions for the states are generalized Stu-
dent’s t-distributions, the posterior predictive distributions of the cluster at the
start of the window as given in Equation (8.18). The prior distribution is cho-
sen as outlined in Section 8.4, Equations (8.23) to (8.26).

A number of GLR thresholds are used in the process, to determine whether
a cluster change shall be made, if a new cluster shall be created, or if the current
cluster shall be merged with another. In addition we use different thresholds for
preprocessing clusters compared to newly created clusters, where we require
a closer match with newly created clusters. One reason for this is that new
clusters can be dominated by the prior distribution, and for this reason are
more likely to have a high GLR when compared to each other. We base all
thresholds on the threshold used for finding points of model change in the
preprocessing step. Different multiplicative factors are applied, according to
Table 8.2.
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Initialize current clus-
ter, sliding window.

Do observations in slid-
ing window match

current cluster?

Find point of cluster
change in sliding window.

Find matching cluster/
create new cluster.

Matching same
as current?

Change cluster.

Update previous
and current cluster.

Update sliding window.

Step sliding window.

Update current cluster.

Check for cluster merge.

no

yes

no

yes

Figure 8.2: Simplified flowchart of the adaptive process. The process continues until
the task is terminated and there are no more observations to process.

8.5.1 Determining if there is a Cluster Change in the Window

The GLR is estimated of the sliding window and the starting cluster distribu-
tions. If this is below a threshold slidingLimit, we move into the right column
of Figure 8.2. A segment clusterF indSegment of length T around the end-
point of the sliding window is considered. A Normal-Gamma distribution for
this segment is calculated using Equations (8.10) to (8.13) and the initial prior
distribution. Sufficient statistics are derived with the Forward-Backward algo-
rithm using the generalized Student’s t-distribution as the posterior predictive
of the initial prior distribution. The point of cluster change and the cluster at
the end of the sliding window are determined as outlined in Algorithm 8.1.

Determining the Point of Cluster Change: The sliding window is divided
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Threshold Purpose Factor

slidingLimit
Check if cluster change

in slidingwindow
1

newClusterLimit Create new cluster 2
changePreLimit Change to a preprocessing cluster 1

mergeClusterPreLimit
Merge current with

preprocessing cluster
1.5

mergeClusterLimit Merge current with closest cluster 1

Table 8.2: Thresholds used in the adaptive process and the multiplicative factor to the
threshold used in finding points of model change in the preprocessing step.

into chunks that are considered from the endpoints of the sliding window. The
GLR of the starting cluster with the first chunk is compared to the GLR of
closestClusterAll with the last chunk. Iteratively, the chunk with the highest
GLR is added to the start or end sections of the sliding window, and the next
chunk from the appropriate side is considered, until all chunks are added to
either side.

Algorithm 8.1 Pseudocode describing the process of finding the potential
point of change and the new cluster.

Input Current cluster at the beginning of the sliding window, preprocessing and adaptive
clusters, sliding window and cluster finding segment with Normal-Gamma distributions.

Output Point of cluster change and current cluster at end of sliding window.
1: function CLUSTERCHANGE(clusters, preClusters, clusterFindSegment,slidingWindow,

currentCluster)
2: closestClusterAll← argmaxc∈clusters GLR(c, clusterFindSegment)
3: potentialChangePoint← FINDCHANGEPOINT(slidingWindow, currentCluster, closest-

ClusterAll)
4: testEndSegment← slidingWindow[potentialChangePoint:end]
5: testNGAll← POSTERIORNG(closestClusterAll, testEndSegmentNG)
6: testGLRAll← GLR(closestClusterAll, testNGAll)
7: if testGLRAll < newClusterLimit then
8: newCluster← CREATECLUSTER(testEndSegment)
9: return potentialChangePoint, newCluster

10: end if
11: closestClusterPre← argmaxc∈preClusters GLR(c, clusterFindSegment)
12: testNGPre← POSTERIORNG(closestClusterPre, testEndSegmentNG)
13: testGLRPre← GLR(closestClusterPre, testNGPre)
14: if testGLRPre > changePreLimit then
15: return potentialChangePoint, closestClusterPre
16: end if
17: return potentialChangePoint, closestClusterAll
18: end function
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8.5.2 Updating the Sliding Window and Clusters

If a cluster change has taken place, we continue downwards in the right col-
umn of Figure 8.2. A new sliding window is created from the endpoint of
the current, using posterior student distributions of the new cluster to calculate
the sufficient statistics. Posterior distributions and sufficient statistics for the
previous and new clusters are updated with the sliding window segments prior
and after the cluster changing point.

If there is no need for cluster change, we proceed in the left column of Fig-
ure 8.2. The sliding window is advanced with the step size. The distribu-
tions are updated by removing the sufficient statistics for the step no longer
in the sliding window, and adding those for the new step, according to Equa-
tions (8.10) to (8.13) and Equations (8.14) to (8.17). The updated cluster is
compared with the other existing clusters. If the GLR of the current cluster
and the closest cluster is large enough the clusters are merged.

8.5.3 Complexity Analysis

The computation of sufficient statistics with the Forward-Backward method
has a time complexity of O(N2L), where N is the number of states and L is
the length of the considered section. For each window, L is bounded by 2T ,
as we may need to calculate sufficient statistics for the clusterF indSegment
when a cluster change is considered and for a new sliding window in the event
of cluster change.

The GLR calculations are summed over the states, and we find the maxi-
mum GLR among all clusters, resulting in a total time complexity of O(NC),
where N is the number of states and C is the number of clusters.

The total time complexity of the adaptive step is O(N2 +NC), where N
is the number of states in the HMM, fixed after the preprocessing step, and C
is the number of clusters.

8.6 Evaluation

8.6.1 Goal of the Evaluation

In the following experiments2, we first generated the execution samples ac-
cording to the predefined ground truth model, and then we performed the pro-
posed method on the execution samples in order to estimate the posterior dis-

2Code and data are available online https://github.com/annafriebe/
AdaptiveETBayes.

https://github.com/annafriebe/AdaptiveETBayes
https://github.com/annafriebe/AdaptiveETBayes
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tribution. The goal of the experiments was to investigate the accuracy of the
estimated posterior distribution having the ground truth model as the refer-
ence. By using synthetic data in the evaluations we can make comparisons
to the ground truth distributions. Comparisons are made by calculating the
Kullback-Leibler (KL) divergence, as will be further outlined below.

In the experiments, we distinguish the two main steps, the preprocessing
step of the method – where the initial execution sample is analyzed in an offline
manner – and the adaptive process—where the estimated parameters, from the
preprocessing step, are adaptively modified online in order to account for the
changes in the ground truth model over time. For the preprocessing step, we
compared the estimated posterior distributions after the clustering process to
the ground truth distributions. For the adaptive process, we compared the esti-
mated posterior distributions during the adaptive process to the known gener-
ative distributions. Three versions of the adaptive process are evaluated.

1. The full algorithm with clusters created, adapted and merged. We refer
to this version as EST_FP.

2. The online algorithm with cluster adaptation, but without creation and
merging of clusters. We refer to this version as EST_NCM.

3. The online algorithm without creating, adapting or merging clusters,
only switching between the clusters resulting from the preprocessing
stage. We refer to this version as EST_SP.

To evaluate the similarity between the posterior estimates and the ground truth
distributions, the KL divergence is calculated. The KL divergence is an asym-
metric measure of the difference from a distribution Q to another reference
distribution P , with continuous probability density functions q(x) and p(x)
respectively, defined as

DKL(P ||Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (8.31)

The KL divergence was chosen as it quantifies the information lost when mov-
ing from the ground truth distribution to the estimated distribution. The GLR
is not suitable for this evaluation because it is based on likelihoods of observa-
tions.

The KL divergence is numerically approximated from the estimated pos-
terior distribution to the ground truth distribution in the range [0, 150]. The
posterior distribution is constructed by weighting the generalized student’s t
distributions of each state with the stationary probabilities of the states in the
fitted HMM. The ground truth normal distributions are similarly weighted with
the known stationary probabilities of states.
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Sequence 1 2 3 4
Cluster 1 0.111 0.054 0.158 0.109
Cluster 2 0.149 1.663 0.045 0.036
Cluster 3 0.051 0.323 0.081 0.580
Cluster 4 0.151 0.067 0.116 0.174

All clusters 0.107 0.156 0.085 0.107

Table 8.3: KL divergence measures for the preprocessing process.

8.6.2 Generation of Sequences from the Ground Truth Model

Execution sequences are generated from the ground truth model defined as a
three state Markov model, where transition probabilities between states are in
the range 0.1-0.8. Each sequence is constructed from five clusters, and each
cluster is constructed from the segments of length within interval [50, 300].
One of the clusters does not appear until after the first 1000 job indices, which
means it is not in the preprocessing section. The execution time samples for
each cluster and its respective segments, are generated according to a three
state Markov Model, such that each state is characterized by a Gaussian emis-
sion distribution with a mean randomly generated from one of the three fol-
lowing uniform ranges [25, 50], [65, 80] and [95, 120] respectively and stan-
dard deviations within the range [2, 6]. The cluster means are ordered, so that
if the mean of a state in cluster A is lower than the mean of the same state
in cluster B, µnA < µnB , then the same relation applies to the other states’
means in these clusters. The reason for this is that points of model change are
not as accurately found when the state means of two clusters move in opposite
directions. This is likely due to the construction of the GLR of segments as the
sum over the states.

8.6.3 Results

8.6.3.1 Preprocessing Step

In Figure 8.3 we show means and standard deviation of the estimate, i.e. the
posterior generalized student’s t distributions of the resulting clusters as black
lines. We also show the means and standard deviations of the ground truth
clusters as red lines. For sequence 2, four states are identified, and the state
with the lowest stationary probability is displayed in cyan. In Figure 8.3, points
of model change are also visible. KL divergence measures along the sequences
are displayed, in black for the preprocessing section. Mean KL divergence
measures for each cluster and for the preprocessing section are displayed in
Table 8.3.
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8.6.3.2 Online Adaptive Process

The means and standard deviations of the posterior generalized student’s t dis-
tributions during the adaptive process are displayed in blue in Figure 8.3 for
four sequences. These are shown in relation to the known means and standard
deviations of the normal distributions in the true clusters in red. For sequence
2, the HMM identification finds four states, and the state with the lowest sta-
tionary probability is displayed in cyan. In Figure 8.3 the points of model
change are also visible.

The left column displays the result when applying EST_FP, the full pro-
cess, to four test sequences. Creation of new clusters is indicated with black
vertical lines, and merging of clusters is marked with red vertical lines. The
middle column shows the result when applying EST_NCM, without creation
and merging of clusters, but with adaptive cluster updates for the same se-
quences. The right column displays the result when applying EST_SP, with
only switching between the preprocessing clusters.

The KL divergence from the distribution constructed from the posterior
generalized student’s t distributions to the distribution constructed from ground
truth Gaussian distributions is calculated. When constructing the distributions,
the emission distributions are weighted with the estimated and known station-
ary probabilities respectively. The KL divergence is calculated for each job
index in each sequence for the three versions of the adaptive process. Results
are displayed in Figure 8.3. Means are calculated for each ground truth cluster
and for the entire adaptive part of the sequence, and presented in Table 8.4. In
sequences 1, 3 and 4, EST_SP has a better average fit (lower average KL diver-
gence measure), as can be seen in the "All clusters" row of the tables. We also
look at the average KL divergence of clusters not appearing in the preprocess-
ing portion, that is Cluster 5 for all sequences, and for sequence 2 additionally
Cluster 2. Here we see that EST_FP has lower KL divergence measures than
EST_SP in four out of the five new clusters. For the EST_NCM, the KL di-
vergence is lower for all five new clusters. EST_FP and EST_NCM appear to
be roughly equivalent for new clusters, with the EST_NCM having lower KL
divergence scores in three out of five new clusters.

8.6.4 Discussion

The KL divergence in the adaptive section is in the range of 2-10 times larger
than in the preprocessing section in our experiments, for all three versions of
the adaptive process. A larger KL divergence is expected from a less compu-
tationally expensive approach.
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Figure 8.3: True and predicted distributions for four sequences, with the three dif-
ferent versions of the process. KL divergence measures along the sequences are dis-
played.
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Sequence no. Cluster no. EST_FP EST_NCM EST_SP

1

1 0.347 0.248 0.277
2 0.276 0.276 0.310
3 N/A N/A N/A
4 0.770 0.786 0.442
5 0.411 0.266 0.359

All clusters 0.459 0.401 0.346

2

1 0.173 0.173 0.217
2 0.263 0.261 0.681
3 0.493 0.493 0.539
4 0.340 0.342 0.110
5 0.355 0.362 0.400

All clusters 0.297 0.297 0.392

3

1 0.460 0.608 0.478
2 0.506 0.257 0.139
3 1.142 1.180 0.808
4 0.285 0.282 0.159
5 0.270 0.503 0.512

All clusters 0.688 0.739 0.536

4

1 0.241 0.242 0.215
2 0.347 0.281 0.046
3 0.498 0.502 0.620
4 0.414 0.417 0.171
5 0.631 0.627 0.760

All clusters 0.418 0.405 0.373

Table 8.4: KL divergence measures for different sequences and clusters.

The fact that EST_SP performs better than the versions with cluster up-
dates for clusters available at the preprocessing step indicates that there is some
deterioration of the estimates, possibly due to erroneous estimates of the points
of cluster change.

It can be noted that in some segments, the estimated means of the states
with the highest and lowest means tend to move towards the middle state in
the three state HMM, coinciding with a higher standard deviation. This is
likely due to samples generated by the middle state distribution resulting in
occupancy probabilities significantly higher than zero for an additional state.
When these samples are weighted into the sufficient statistics of the lower or
higher state, the posterior distribution is affected in this manner.

The choice of prior distribution has a similar influence on the posterior
estimates. In the proposed method, the prior distribution is based on the HMM
fitted to the preprocessing section. For portions of the execution time trace that
deviate significantly from the preprocessing section, the posterior estimates
will have a mean that is drawn towards the prior mean, and a variance that is
overestimated due to the prior pseudo observations acting as outliers.
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8.6.5 Limitations and Future Evaluation Goals

The main limitation of the evaluation is that it has been performed with syn-
thetic data, where the execution time samples are generated from ground-truth
distributions with instantaneous cluster changes at specified points in time. The
main reason for this choice was the controllable experiment setup where the
ground truth model is known. One of the sensitive design choices of the ex-
periment is evident in the generation of the ordered means within the clusters,
which should be generalised in the future evaluations. Also, at the moment we
cannot be certain that the results are valid for more realistic use cases and this
will be addressed in the future work.

8.7 Conclusion and Future work

In this paper, we proposed a method to adjust at runtime an HMM aimed at
characterizing the execution time of a task, with a limited time complexity. The
posterior execution-time distributions obtained through the proposed approach
could be used to assess several real-time properties of a system, e.g., estimat-
ing the deadline miss probabilities, but further investigations are needed, and
devoted to future work.

The results from the evaluated synthetic test cases indicate that the pro-
posed method is capable of adapting the estimates at runtime, such that the
estimated distribution tracks the ground truth distribution used to generate the
execution time samples. The similarity between the estimated and ground truth
distributions are evaluated by calculating the Kullback-Leibler divergence. In
some cases we can see biased means and increasing standard deviations in the
posterior distribution. Future work will investigate the possibility of introduc-
ing regularization to limit the increase in the standard deviation. Furthermore,
a more extensive evaluation will be performed on real applications, e.g., com-
puter vision, robotics, or control use cases, to better assess the ability of the
proposed approach to provide meaningful information on the execution time
distributions of complex real-time applications.
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Abstract

Estimating the response times of real-time tasks and applications is impor-
tant for the analysis and implementation of real-time systems. Probabilistic
approaches have gained attention over the past decade, as they provide a mod-
eling framework that allows for less pessimism for the analysis of real-time
systems. Among the different proposed approaches, Markov chains have been
shown to be effective for the analysis of real-time systems, in particular, in the
estimate of the pending workload probability distribution and of the deadline
miss probability. However, this has been analyzed only for discrete emission
distributions, but not for continuous ones. In this paper, we propose a method
for analyzing the workload probability distribution and bounding the deadline
miss probability for a task executing in a Constant Bandwidth Server, where
execution times are described by a Markov model with Gaussian emission dis-
tributions. In the evaluation, deadline miss probability bounds and estimates
are derived with a workload accumulation scheme. The results are compared
to simulation and measured deadline miss ratios from tasks under the Linux
Constant Bandwidth Server implementation SCHED_DEADLINE.
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9.1 Introduction

Real-time systems are commonly characterized as hard or soft real-time sys-
tems. In a hard real-time system deadlines must always be met, but in a soft
real-time system deadline misses can be tolerated to some extent. Deadline
misses in a soft real-time system lead to a deterioration of the Quality of Ser-
vice (QoS) [10] or Quality of Control (QoC) [28]. The number of deadline
misses must be sufficiently low so that the QoS or QoC is retained at an ac-
ceptable level [8].

Hidden Markov Models (HMMs) have been utilized to model execution
times in systems with dependencies, and where there is regularity in the vari-
ation of the execution times. In [5, 16], the authors have modeled execu-
tion times as Markov models with discrete emission distributions, including
estimating the deadline miss probability under a Constant Bandwidth Server
(CBS). Emission distributions have also been modeled as continuous Gaussian
distributions [18, 17], with the advantage of potentially providing more robust
estimates from a lower number of samples. Gaussian distributions also allow
for representation with only two parameters, as opposed to the case where in-
dividual probabilities of each discrete execution time value are stored. The
application of HMMs with continuous emission distributions has been limited
to the estimation of the sole execution time [18].

This paper focuses on the problem of bounding and estimating the deadline
miss probability of a real-time application, exploiting HMMs. In the literature,
two concepts related to probabilistic deadlines are commonly used. The Dead-
line Miss Probability (DMP) is interpreted as the ratio of missed deadlines to
the number of jobs in a long (tending to infinite) time interval. The Worst-Case
Deadline Failure Probability (WCDFP) is interpreted as an upper bound on the
probability of a deadline miss for any single job [12]. In this paper, we focus
on the DMP as the long-run frequency interpretation, for the overall HMM and
for each state separately.

More specifically, in this paper, we address the problem of upper bounding
the workload distribution and deadline miss probability under CBS of a peri-
odic task where execution times are modeled by a Markov chain with Gaus-
sian emission distributions. We propose an iterative workload accumulation
scheme, where workload distributions are accumulated sequentially over task
periods. The scheme starts from a point of workload depletion, that is a task
period with zero carry-in workload. The method provides an upper bound on
the deadline miss probability in each state and overall under certain assump-
tions.

The method is evaluated by comparing the obtained results with the dead-
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line miss ratio of tasks running under the Linux kernel implementation of CBS,
SCHED_DEADLINE [22], and with results from simulation.

The paper is structured as follows. In Section 9.2, related work is dis-
cussed. The notation used in the paper and the system model is outlined in
Section 9.3. The analysis for upper bounding the deadline miss probability
is described in Section 9.4, and in Section 9.5 the parts are combined in an
overall workload accumulation process. In Section 9.6 the evaluation is pre-
sented and results are provided. Conclusions and future work are discussed in
Section 9.7.

9.2 Related Work

Davis and Cucu-Grosjean provide a comprehensive survey on probabilistic
schedulability analysis techniques [12], along with a survey on probabilistic
timing analysis [13].

Díaz et al. [14] presented a response time analysis for periodic tasks where
execution times are independent random variables and showed that the backlog
is a Markov chain.

Maxim and Cucu-Grosjean [29] showed that in systems where execution
times, deadlines, and interarrival times are independent random variables, the
Worst-Case Response Time (WCRT) can be found by synchronous release if
deadlines are constrained and jobs are aborted when their deadline is missed.

Ivers and Ernst [19] addressed the case where execution times are depen-
dent and proposed the use of Fréchet bounds and probability boxes.

Extreme Value Theory (EVT) has been applied in measurement-based sta-
tistical analysis of response times to find the probabilistic WCRT (pWCRT).
This is an upper bound on the probability of exceeding a response time for
every valid sequence of program executions and is based on finding the dis-
tribution of the extreme values, the distribution’s tail. Most of the work in
this regard has been done by Lu et al. [26, 25, 24]. Maxim et al. [30] have
shown that the methods based on EVT provide sound results. EVT is appli-
cable in cases of dependence, as long as there is stationarity [20] or extremal
independence [33].

Real-time queuing theory [21] provides methods for analyzing the
response time distribution specifically in the case of heavy traffic when
utilization is close to 1.

Bozhko et al. [7] proposed a response time analysis with Monte Carlo sim-
ulation for fixed-priority preemptive scheduling with execution times as inde-
pendent random variables.
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Von der Brüggen et al. [35] provided a method for over-approximating the
WCDFP under EDF for tasks with different execution modes. This includes
derivation for acyclic task chain dependencies among a bounded number of
subsequent jobs. The number of intervals considered is substantially reduced
due to the observation that the probability of a deadline miss in an interval is
bounded by the probability that the processor does not idle in the same interval.

Mills and Anderson [31] provide response time and tardiness bounds for
soft real-time tasks with stochastic execution times, in a server-based sched-
uler. In this work, execution time dependence is considered within but not
across time windows. A larger window leads to greater tardiness bounds. Liu,
Mills, and Anderson [23] further proposed the use of independence thresholds,
where independence is assumed for execution times exceeding a determined
threshold value.

The CBS is described in Section 9.3. It was introduced by Abeni and But-
tazzo [2], and used to obtain probabilistic deadlines for QoS guarantees [3].
Analysis under CBS has been performed with execution times [4, 32] and in-
terarrival times [6, 27] modeled with probability distributions.

Tasks with dependent execution times have been modeled as Markov
chains and been analyzed under CBS by Frías et al. [16, 5]. The steady-state
response time distribution was calculated. The results were compared to
running the task under Linux SCHED_DEADLINE. The time required for the
analysis depends on the range of computation times, the number of states, and
the resampling factor [34].

Execution times have been modeled as continuous Gaussian distributions
in the context of emission distributions in a Markov chain [18, 17]. We are not
aware of any work that analyzes this model in terms of response times or dead-
line miss probabilities. In this paper, we aim to bridge this gap and enable the
use of an HMM with Gaussian emission distributions for schedulability anal-
ysis. Similarly as in the work of Frías et al. [16, 5], dependencies are explicit
in the HMM, and the task is running in a CBS. The CBS provides isolation
from other tasks on the system, so that the pending workload considered is
carry-in workload from previous jobs of the same task, instead of workload
from other tasks as in most work concerning response times. The choice of
Gaussian distribution is partly based on simplicity and tractability. In [18] a
HMM with Gaussian emission distributions was shown to be a valid model
in a video decompression case. Modeling the execution times of each state
as a Gaussian distribution may seem simplistic. However, several states with
Gaussian distributions can be combined to form a more general distribution
shape. In addition, if the means of the states’ distributions differ significantly,
the Markov Model transition probabilities may affect the response times to a



102 9.3. System Model and Notation

greater extent than the state distribution shapes. As an example, a high likeli-
hood of several consecutive jobs in the state with the longest execution times
will lead to much longer response times, compared to a case where there is
high likelihood that a job in this state is followed by a job in the state with
the shortest execution times. Nevertheless, the use of the Gaussian distribu-
tion is a limitation of this work, and therefore the method is also evaluated
for non-Gaussian distributions. Here, an exponential distribution is chosen.
Exponential-tail distributions have been used in pWCET analysis[9, 1, 11], as
the tail beyond a certain point is a safe upper bound of light-tailed distributions.

The iterative approach that we propose in this paper provides a bound/
estimate already after a few accumulation periods, while the method proposed
by Frías et al. requires the calculation of the full steady state response time
distribution.

9.3 System Model and Notation

The notation used in the paper is outlined in Table 9.1. We use the notation x̂
to indicate the estimate of a variable X , and we use the superscripts ∗, ↑, and ↓

for the true values, upper, and lower bounds, respectively.
We will use the concept or upper bounding random variables, as defined in

Definition 9.3.1.

Definition 9.3.1 (cf. [15, 13]). Let X and Y be two random variables. We say
thatX is greater than or equal toY (i.e.,X upper boundsY), if the Cumulative
Distribution Function (CDF) of X is never above that of Y , and we denote this
relation by X ≥ Y .

To upper bound workload distributions, we will use the partial Gaussian
distribution, as defined in Definition 9.3.2. Let us consider a Gaussian
N (µ, σ2) with probability density function f(x|µ, σ2). Φ(x) is the
cumulative density function of the standard normal distribution.

Definition 9.3.2. We define a partial Gaussian distribution N tail(µ, σ2, α),
originated from a Gaussian distribution N (µ, σ2), as:

f tail(x|µ, σ2, α) =

{
0, x ≤ α

1
Φ(µ−α

σ
)
f(x|µ, σ2) x > α

(9.1)

In a partial Gaussian distribution, the probability for the elements of the
Gaussian distribution lower than α are set to zero and the remaining is normal-
ized so that the distribution integrates into one.
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Table 9.1: Overview of notation used in this paper.

Symbol Description
Basic notation

T Task period
Ji Job at task period i
ai Arrival time of Ji
di Absolute deadline of Ji
D Relative deadline
P Server period
Q Server budget
n Number of server periods in a task period
k Number of server periods in a relative deadline
S Number of Markov states
M State transition matrix
N Number of task periods in workload accumulation

Values of random variables
ci Execution time of Ji
fi Finishing time of Ji
vi Workload at task period i

h
Accumulation sequence of state visits

in Markov chain since workload depletion

h̃
Accumulation vector of the number of visits

in each Markov state since workload depletion
Probability distributions and probabilities

C Execution time distribution

Vh,Vh̃
Workload distribution associated with
an accumulation sequence or vector

mi,j Transition probability from state i to state j
ξ(s) Stationary probability of being in s

pin(s, h̃) Probability of entering s with h̃

pco(s, h̃)
Probability that h̃ in s carries

workload to the next task period
pwd(s) Probability of workload depletion in s
pdm Deadline miss probability
β(s)N Probability of being in state s with h longer than N .

In the derivation of workload distributions, we use convolutions as defined
in Definition 9.3.3.

Definition 9.3.3. The convolution of f and g, denoted with the ∗ operator is:

[f ∗ g] (z) =

∫ ∞
−∞

f(z − x)g(x) dx

9.3.1 Task Model

A real-time task τ consists of a sequence of jobs Ji, i ∈ N. The arrival time of
Ji is ai. The tasks are periodic, with no jitter, i.e., ai+1 = ai+T , with a0 being
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Figure 9.1: An illustration of the task model and the CBS.

the arrival time of the first job. The execution time of Ji is ci and its finishing
time is fi. The jobs may be preempted, and fi ≥ ai + ci. The execution time
ci is modeled as a random variable. The random variable R models the time
from activation time to finish time of a job.

The deadline of a job Ji is di = ai +D, where D is the relative deadline.
Jobs are executed until completion, even when a deadline is missed. The rel-
ative deadline can be longer than the task period. We consider the probability
of a deadline miss pdm, that is the overall probability that a job finishes after
the deadline, pdm = p(R > D).

9.3.2 Scheduling Algorithm

The considered scheduling algorithm is reservation-based, namely the Con-
stant Bandwidth Server (CBS). Each task has its own server. Within each
server period P , the task is guaranteed to receive Q units of processing time.
The fraction of the processing resource dedicated to this task, the bandwidth,
is B = Q/P . We choose the server period so that it divides the task period
evenly, i.e., T = nP , where n is a positive integer. We also define k, a pos-
itive integer that is the number of server periods in the relative deadline D,
D = kP .

An illustration of the task model and CBS is shown in Figure 9.1. In this
illustration, the task period is divided into three server periods, and the band-
width is 0.5. As illustrated, the deadline of a job does not need to be within
a task period from the arrival; the relative deadline may be longer than the
period.
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State 1

State 2

State S

...

Task period 1 2 3 4 5

Figure 9.2: Illustration of the period by period workload accumulation sequence.

9.4 Execution Time Model and Analysis

9.4.1 Markov Chain Execution Times

In this section, we consider a task, where the execution time distribution is
described by a Markov model characterized by the triplet 〈S,M,C〉. S =
{1, 2, . . . , S} is the set of S states, S ∈ N. M is the S × S state transition
matrix, where the element ma,b represents the conditional probability of be-
ing in state b at task period i + 1, given that at task period i the state is a.
C = {C1, C2, . . . , CS} is the set of execution time distributions, or emission
distributions related to the respective state. These are modeled as Gaussian
distributions with mean µs, and variance σ2

s , i.e., Cs ∼ N (µs, σ
2
s).

9.4.2 Overview of the Proposed Approach

To upper bound the deadline miss probability of the task running under CBS,
we propose a method based on a workload accumulation scheme. The main
idea is outlined below, followed by the details in the remaining subsections.

In each task period, task τ is guaranteed nQ units of processing time. The
pending workload at the i-th task period is denoted as vi and defined as in [3]:

vi = max(0, vi−1 − nQ)︸ ︷︷ ︸
carry-in workload

+ci (9.2)

where the first term accounts for the previous workload, initially set to 0, and
the first period is v1 = c1. An example of how the workload evolves according
to the Markov chain model is shown in Figure 9.2. We start with zero initial
pending workload and add one task period at a time of workload accumulation.
In the figure, the dashed red and solid blue lines depict two possible workload
accumulation sequences that are in state 2 at task period 5 from workload de-
pletion. The accumulation sequence is modeled as a random variable H that
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can take the values of any possible workload accumulation path. In the exam-
ple from Figure 9.2, in the dashed red path it takes the value h = (S, S, 1, 2, 2).

Davis and Cucu-Grosjean [12] define the deadline miss probability for a
task as the average deadline miss probability of task jobs during a hyperpe-
riod. In this work, using the CBS allows us to discard pending workload from
other tasks in the task set. The notion of hyperperiod is therefore irrelevant,
and we define the Deadline Miss Probability DMP as the average deadline
miss probability of the task’s jobs. We do this by considering accumulation
sequences. More specifically, we define the probability of a job arrival leading
to the accumulation sequence h as pin(h). Since each job arrival leads to one
specific accumulation sequence, the sum of pin(h) over all h equals 1. We
define the conditional deadline miss probability for a job with accumulation
sequence h as pdm(h). Then, the DMP is defined as the sum of the deadline
miss probabilities for each accumulation sequence weighted with their respec-
tive probabilities:

DMP =
∑
∀h

pin(h)pdm(h) (9.3)

Problem: The sum of Equation (9.3) has a countably infinite number of terms.
This paper investigates how to find a bound for DMP with a finite number of
terms.

In the remainder of this section, we will provide an upper bound on DMP
by finding the upper bounds on pin and pdm. The process is divided into two
steps. First, we compute the upper bounds on pin and pdm of accumulation
sequences up to length N , thus approaching the true deadline miss probability.
To make a safe bound, we then sum the pin values in the remaining accu-
mulation sequences of length N + 1 to infinity, assuming that pdm for these
periods is 1. This sum is referred to as β. This finally leads to the safe over-
approximation of DMP.

The steps for deriving a bound on DMP are presented in this paper as
follows:

Section 9.4.3: To determine upper bounds on pdm and pin in Equation (9.3)
we need to find upper bounds on the pending workload distributions associated
with each state and accumulation sequence. This is done in Equations (9.20)
and (9.24).

Section 9.4.4: Bounds on pin depend on the probability of carry-over
workload pco from the previous step and the transition probabilities m. In
the first step of the accumulation process, pin depends on the probability of
workload depletion pwd for each state. With pwd propagating along the accu-
mulation, each pin is a linear combination of pwd for the different states.
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Initialize first workload accumulation
period, Section 9.4.4 and initialize β.

Calculate bounds
for pwd and pdm,

Sections 9.4.5 and 9.4.6.
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bounds completed.

Calculate β, Sec-
tion 9.4.7 or Section 9.4.8

Add next workload
accumulation pe-

riod, Section 9.4.4.

yes

no

Figure 9.3: The workload accumulation process.

Section 9.4.5: Bounds on pwd are derived, these rely on the sum of pin in
accumulation periods after N , denoted as β.

Section 9.4.6: In this section bounds on pdm are presented, using the
bounds on V , pin and β. The upper bound of pdm for a state is defined in
Equation (9.30).

Section 9.4.7: In this section, we derive a bound on β. β is the minimum
of Equations (9.31) and (9.32), and is utilized for computing the lower bounds
on pin, pco and finally V .

Section 9.4.8: In this section, we derive an estimate of β as an alternative
to the bound.

The parts are tied together in the iterative workload accumulation algo-
rithm presented along with an example in Section 9.5. In Figure 9.3 the pro-
cess is illustrated with reference to the different sections. Section 9.4.3 is not
referenced in the figure as it is a basis for all the remaining sections.

9.4.3 Bounding the Conditional Pending Workload Distribution
Associated with a Workload Accumulation Sequence

We seek upper and lower bounds of the conditional pending workload distri-
bution conditioned on having a given accumulation sequence since the most
recent point of workload depletion. As an example from Figure 9.2, we want
to define the pending workload distribution in state 2 at task period 5, provided
that the transitions since workload depletion have been along the path marked
as dashed red, h = (S, S, 1, 2, 2).
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Figure 9.4: Illustration of a convolution result with an upper bounding partial Gaus-
sian distribution.

We denote the conditional pending workload distribution, conditioned on
a given accumulation sequence h as Vh with a probability density function
p(v|H = h).

The lower and upper bounds for this conditional pending workload dis-
tribution depend only on the number of visits in each state in the accumula-
tion sequence and are independent of their order. We model the accumulation
vector as a random variable H̃ that takes values as S-dimensional vectors of
non-negative integer values, where each value represents the number of visits
in a state. This means that the dashed red and the solid blue accumulation se-
quence lines in Figure 9.2 will contribute to the same accumulation vector at
task period 5 since they both have the same number of visits in each state, that
is h̃ = [1, 2, . . . , 2]. We define the operation h̃[s] as taking the s-th element
of h̃. We also define h̃+s as h̃ with the s-th element incremented by one, to
simplify the notation of the accumulation vector in s with carry-in workload
from h̃.

The number of possible bounded pending workload distributions of length
N in a system with S states is

(
N+S−1

N

)
= (N+S−1)!

N !(S−1)! , as opposed to SN which
would be needed if ordering were taken into account. For a fixed number of
states S, the number of distributions to consider increases with the number of
periods considered as O(NS−1).

Recalling Definition 9.3.1, we derive an upper bound conditional pending
workload distribution V↑

h̃
≥ Vh.

In the following, we show that a partial Gaussian distribution (see Defi-
nition 9.3.2) upper bounds the conditional pending workload distribution. An
illustration is in Figure 9.4, where the blue curve and red line upper bounds the
black workload distribution, lower probability values (blue area) are moved to
higher (orange area).

Theorem 9.1. The conditional pending workload distribution associated
with each state s and accumulation vector h̃ is upper bounded by
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N tail(µ(h̃), σ2(h̃), α(h̃, s)).

We prove this by induction. For clarity we state a Lemma 9.2 for the base
case, and Lemma 9.3 for the inductive step.

Lemma 9.2. The partial Gaussian distribution N tail(µs, σ
2
s , 0) upper bounds

the conditional pending workload distribution Vh̃ in state s immediately after
a point of workload depletion.

Proof. In the first step after workload depletion, the conditional pending work-
load distribution Vh equals the execution time distribution of the entered state
s. Excluding negative values and normalizing gives an upper bounding distri-
bution, as probabilities are moved from lower workload values to higher. Thus,
N tail(µs, σ

2
s , 0) is an upper bound.

With non-zero carry-over workload in a transition from state sp with
accumulation vector h̃, and an upper bound on the workload distribution
N tail(µ(h̃), σ2(h̃), α(h̃, sp)), into state s, we will show that the conditional
pending workload distribution is upper bounded by the partial Gaussian
distribution N tail(µ(h̃+s), σ

2(h̃+s), α(h̃+s, s)). Below, in Equations (9.4)
and (9.5) we define µ(h̃+s) and σ2(h̃+s). Equations (9.6) and (9.7) are used
to simplify the expression of the starting value α(h̃+s, s) of the resulting
upper bounding distribution, defined in Equation (9.8). Here sf−1(q, µ, σ2)
denotes the inverse survival function at q of a Gaussian distribution with mean
µ, and variance σ2. Equation (9.7) defines K(h̃, sp), the normalization factor
needed for the conditional probability calculation. We perform a convolution
with the upper bounding workload distribution in sp with h̃ extending past
the task period. K(h̃, sp)

−1 is the integral of this part, to get a probability
distribution integrating to one.

µ(h̃+s) = µs +

S∑
i=1

h̃[i](µi − nQ) (9.4)

σ2(h̃+s) = σ2
s +

S∑
i=1

h̃[i]σ2
i (9.5)

α∆(h̃, sp) = max(0, α(h̃, sp)− nQ) (9.6)

K(h̃, sp) =

[
Φ

(
µ(h̃)− nQ− α∆(h̃, sp)

σ(h̃)

)]−1

(9.7)

α(h̃+s, s) =

{
0 h̃ = 0

sf−1( 1
K(h̃,sp)

, µ(h̃+s), σ
2(h̃+s)) h̃ 6= 0

(9.8)
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Lemma 9.3. When transitioning with non-zero carry-over workload
from state sp with accumulation vector h̃ into state s, and with an upper
bound on the workload distribution in the previous task period V↑ as
N tail(µ(h̃), σ2(h̃), α(h̃, sp)), the conditional pending workload distribution is
upper bounded by N tail(µ(h̃+s), σ

2(h̃+s), α(h̃+s, s)).

Proof. The strictly positive carry-over workload distribution is the normalized
workload tail beyond the task period processing time, which can be written as
N tail(µ(h̃)− nQ, σ2(h̃),max(0, α(h̃, sp)− nQ)).

The execution time distribution in state s is described by N (µs, σ
2
s). The

resulting upper bound on the conditional workload distribution V↑
h̃+s

in state s

with accumulation vector h̃+s is the result of the convolution, Definition 9.3.3,
of the probability density functions of the execution time and the upper bound
on the positive carry-over workload. This holds because execution times are
independent random variables and the dependence of the Markov model is
restricted to the transition probabilities.

To simplify the notation in the convolution expansion, we introduce the
following:

µR(z) =
(z − µs)σ2(h̃) + (µ(h̃)− nQ)σ2

s

σ2
s + σ2(h̃)

(9.9)

σ2
R =

σ2
sσ

2(h̃)

σ2
s + σ2(h̃)

(9.10)

µΣ∆ = µs + µ(h̃)− nQ (9.11)

σ2
Σ = σ2

s + σ2(h̃) (9.12)

Expanding the convolution for V↑
h̃+s

:∫ ∞
−∞

f(z − x|µs, σ2
s)f

tail(x|µ(h̃)− nQ, σ2(h̃), α∆) dx

= K(h̃, sp)

∫ ∞
α∆

f(z − x|µs, σ2
s)f(x|µ(h̃)− nQ, σ2(h̃)) dx

= K(h̃, sp)f(z|µΣ∆, σ
2
Σ)

∫ ∞
α∆

f(x|µR(z), σ2
R) dx (9.13)

where the last step isolated the part of the expression that is independent of
x. We recognize the integral in the second factor of Equation (9.13) as the
survival function or 1-CDF at α∆ of N (µR(z), σ2

R). This is monotonically
increasing and goes to 0 as z goes to −∞ and to 1 as z goes to ∞. Thus,



Paper C 111

we can find a value α(h̃+s, s) where the area under the curve of the exact
convolution of the pending workload distribution up to α(h̃+s, s) equals the
area between the curves of the exact pending workload distribution and the
partial Gaussian distribution, N tail(µΣ∆, σ

2
Σ, α(h̃+s, s)) from α(h̃+s, s). An

illustration is provided in Figure 9.4. Using K for normalization of the partial
Gaussian distribution ensures that the tail of the upper bound approaches the
tail of the full convolution asymptotically. We find the α(h̃+s, s) which gives:

K(h̃, sp)

∫ ∞
α(h̃+s,s)

f(x|µΣ∆, σ
2
Σ) dx = 1 (9.14)

As we know that the result of the convolution integrates to one, this shows that
the two regions described and illustrated in Figure 9.4 have the same area. Re-
placing the exact convolution with the partial Gaussian is equivalent to moving
probability weight from lower pending workload values to higher, leading to
an overestimate. We have:

µ(h̃+s) = µΣ∆ (9.15)

σ2(h̃+s) = σ2
Σ (9.16)

α(h̃+s, s) = sf−1

(
1

K(h̃, s)
, µΣ∆, σ

2
Σ

)
(9.17)

This concludes our proof.

Considering all states sp containing the accumulation vector h̃, we define:

α∆(h̃) = max(0,max
∀sp

α(h̃, sp)− nQ) (9.18)

We use this instead of Equation (9.6) in Equations (9.7) and (9.8). With these
lemmas we are ready to prove Theorem 9.1.

Proof. We prove this by induction.
Base case: For the task period after workload depletion, this follows by
Lemma 9.2.
Inductive hypothesis: If we have such a workload distribution upper bound
for all states and accumulation vectors in one task period, it also holds for the
next period.
Inductive step: This follows from Lemma 9.3 and taking the maximum α in
Equation (9.18).

With similar reasoning, we can use a Gaussian distribution as a lower
bound of the pending workload distribution V↓

h̃
≤ Vh. This is illustrated in
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Figure 9.5: An illustration of a convolution result and the Gaussian distribution that
forms a lower bound.

Figure 9.5. As K > 1, and the area under the curve equals one for both
the Gaussian distribution with mean µΣ∆ and variance σ2

Σ and the result of
the convolution, replacing the workload distribution with the Gaussian implies
moving probability weight from higher workload values to lower, thus provid-
ing a lower bound.

9.4.4 Bounds on the Probability of Entering a State with an Accu-
mulation Vector

Each state s in each task period is associated with one or more accumulation
vectors, h̃. Each accumulation vector in a state is associated with lower and
upper bounds on the probability of entering this state with the associated accu-
mulation vector p↓in(s, h̃) and p↑in(s, h̃). Each accumulation vector in a state is
also associated with lower and upper bounds on the probability of the workload
contributing to carry-over into the next period, p↓co(s, h̃) and p↑co(s, h̃).

In the first period, with no carry-in workload, each state is associated with
a single accumulation vector containing zeros except for the current state that
is set to 1. The probability of entering a state in the first period after workload
depletion depends on the stationary probabilities ξ(s) of being in each state,
the probability of workload depletion pwd(s) in each state, and the transition
matrix. The stationary probabilities and the transition matrix are known, but
the probability of workload depletion in each state is unknown at this stage.
In Section 9.4.5 we will describe how to retrieve this. Assuming that we have
lower and upper bounds on the probabilities of workload depletion, p↓wd(s) and
p↑wd(s), we can calculate lower and upper bounds on the probability of entering
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the states in the first workload accumulation period as

p↓in(s, h̃) =

S∑
sp=1

ξ(sp)p
↓
wd(sp)msp,s (9.19)

p↑in(s, h̃) =

S∑
sp=1

ξ(sp)p
↑
wd(sp)msp,s (9.20)

Since there is only one accumulation vector in each state in the first accumula-
tion period, there is no dependency on h̃.

For the following periods, accumulation vectors are created by copying
each accumulation vector from the states in the previous task period and in-
crementing the current state element by 1. We denote this vector as h̃+s Note
that paths from different states in the previous period can lead to the same
accumulation vector. The probability of entering s with h̃+s depends on the
probability of h̃ contributing to carry-over into the next period in all states, and
transition probabilities.

The probability that the workload contributes to carry-over into the next
period is the probability of entering the state with this accumulation vector
times the probability that the conditional pending workload exceeds the avail-
able processor time in a task period. This probability is bounded by p↓co(s, h̃)

and p↑co(s, h̃), then calculated as:

p↓co(s, h̃) = p↓in(s, h̃)p(V↓
h̃
> nQ)

= p↓in(s, h̃)p(N (µ(h̃), σ2(h̃)) > nQ)
(9.21)

p↑co(s, h̃) = p↑in(s, h̃)p(V↑
h̃
> nQ)

= p↑in(s, h̃)p(N tail(µ(h̃), σ2(h̃), α(h̃)) > nQ)
(9.22)

The probability of entering state s with the accumulation vector h̃ is lower
and upper bounded by:

p↓in(s, h̃+s) =

S∑
sp=1

p↓co(sp, h̃)msp,s (9.23)

p↑in(s, h̃+s) =
S∑

sp=1

p↑co(sp, h̃)msp,s. (9.24)

9.4.5 Bounds on the Probability of Workload Depletion

Bounds on the probability of workload depletion for each state are used to
calculate pin in the first step after workload depletion in Equations (9.19)
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Figure 9.6: An illustration of the possible valid region of p↓Σin for two states, if the
true probabilities of workload depletion would be used as p↓wd in Equation (9.19).

and (9.20), and are further propagated to all pin. The true workload deple-
tion probability p∗wd is unknown, and in this section we will derive bounds
for it. Had p∗wd been known, and input as p↓wd in Equation (9.19), the sum
of the lower bounds on the probabilities p↓Σin associated with all accumulation
vectors accounted for would be lower than the stationary probabilities for all
states. Using h̃ ∈ (s, i) to denote the set of accumulation vectors associated
with state s in task period i, we formulate:

p↓Σin (s, pwd) =

N∑
i=1

∑
h̃∈(s,i)

p↓in(s, h̃) ≤ ξ(s), ∀s (9.25)

We define β(s)N as the probability of being in s with workload accumula-
tion past N . We also define e(p↓Σin ) as the error introduced by using the lower
bounding Gaussian distribution in place of the true convolution result. Had
we known the true p∗wd and input it as p↓wd in Equation (9.19) that would give
values of p↓Σin in the blue area of Figure 9.6.

Had the true workload depletion probability p∗wd been known and input as
p↑wd in Equation (9.20), the sum of the upper bounds of the probabilities p↑Σin
associated with all accumulation vectors would be greater than the stationary
probabilities minus the probability of being in the state with longer accumula-
tion vectors β(s)N , for all states. This is outlined in Equation (9.26):

p↑Σin (s, pwd) =
N∑
i=1

∑
h̃∈(s,i)

p↑in(s, h̃) ≥ ξ(s)− β(s)N ,∀s (9.26)

We define e(p↑Σin ) the error introduced by using the upper bounding partial
Gaussian distribution in place of the true convolution result. If we input true
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Figure 9.7: An illustration of the possible valid region of p↑Σin for two states, if the
true probabilities of workload depletion would be used as p↑wd in Equation (9.20).

workload depletion probabilities as p↑wd in Equation (9.20) the resulting p↑Σin
would be in the range depicted as green in Figure 9.7. This allows us to bound
the true workload depletion probabilities to values mapping within both the
blue region of Figure 9.6 and the green region of Figure 9.7.

An upper bound of the workload depletion probability pwd is found for
each state as the maximum of the values that lead to p↓Σin along the orange lines
of Figure 9.6.

Theorem 9.4. The state-wise maximum of pwd taken within the region of pwd
leading to p↓Σin (s) ≤ ξ(s) for all states, and where equality holds for all but at
most one s is an upper bound of pwd.

Proof. Each p↓in(s, h̃) is a linear combination of pwd for all states, this follows
from Equations (9.19), (9.21) and (9.23). Combined with Equation (9.25) it
follows that p↓Σin (s) is also a linear combination of pwd for all states, which for
some positive factors Ai,s we can write:

p↓Σin (s, pwd) =

S∑
i=1

Ai,spwd(i) (9.27)

Assume that we have the true workload depletion probability p∗wd. For an
arbitrary state dimension j in pwd, we can increase pwd(j) with an amount δs,j
so that we reach a plane defined by Equation (9.28). For the lowest δs,j , the
first plane we encounter along the line, we have p↓Σin (i) ≤ ξ(i), ∀i 6= s.

p↓Σin (s, pwd) = Aj,s(p
∗
wd(j) + δs,j) +

S∑
i=1,i 6=j

Ai,sp
∗
wd(i) = ξ(s) (9.28)
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Because the true p∗wd gives p↓Σin (s) ≤ ξ(s) and due to the linear combina-
tion, it follows that at least one dimension of pwd is an upper bound at every
point in the planes defined by p↓Σin (s, pwd) = ξ(s), including the point with
equality for all s - the upper right corner on the orange lines in Figure 9.6. If
a particular dimension does not have an upper bound at this point, we have an
upper bound on one of the planes, as the black dot in the illustration in Fig-
ure 9.6. The plane separating the region of the plane with upper bounds on this
dimension from the region with underestimates will cross at least one of the
orange lines, which ensures that an upper bound will be found in the region.
Illustrations of possible separating planes are dashed lines in Figure 9.6. This
concludes the proof.

Similarly, a lower bound on the workload depletion probability pwd is
found for each state as the minimum of the values that lead to p↑Σin along the
orange lines of Figure 9.7. By using the lower bound from Figure 9.7 to deter-
mine the endpoints of the orange sections in Figure 9.6 and the upper bound
from Figure 9.6 to determine the endpoints of the orange sections in Figure 9.7
e(p↓Σin ) and e(p↑Σin ) can be ignored. The endpoints are adjusted if they are out-
side the valid range for pwd, that is if the probabilities are lower than 0 or
higher than 1. As all p↓Σin (s) and p↑Σin (s) depend linearly on all pwd(s), we only
need to consider the endpoints of the orange sections.

9.4.6 Upper Bounding the Deadline Miss Probability

We can then calculate an upper bound on the deadline miss probability as de-
fined in Equation (9.3). The upper bound on the deadline miss probability p↑dm
conditioned on an accumulation vector h̃ and a state s is:

p↑dm(s, h̃) = p(V↑
h̃
> kQ)

= p(N (µ(h̃), σ2(h̃)) > kQ).
(9.29)

The upper bound on the deadline miss probability in a state is

p↑dm(s) =
β(s)↑N
ξ(s)

+

∑N
i=1

∑
h̃∈(s,i) p

↑
in(s, h̃)p↑dm(s, h̃)

ξ(s)
. (9.30)

9.4.7 Bounding the Probability of Longer Workload Accumula-
tion

The sum of pin in task periods beyondN , β is still unknown, and in this section
a bound is derived. β decreases monotonically with each accumulated period,
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as all probabilities are non-negative. For each period, β(s) decreases with at
least the lower bound on the probability of being in the state in the same period,
i.e.

β(s)N ≤ β(s)N−1 −
∑

h̃∈(s,N)

p↓in(s, h̃)∀s (9.31)

We also know that β is at most the stationary probability minus the lower
bound on the probabilities accounted for, i.e.

β(s)N ≤ ξ(s)−
N∑
i=1

∑
h̃∈(s,i)

p↓in(s, h̃) (9.32)

Thus, given a safe bound for the probability of accumulation vectors not ac-
counted for, β, in one accumulation period, we can obtain safe bounds for
subsequent periods as the minimum of Equations (9.31) and (9.32).

9.4.8 Estimating the Probability of Longer Workload Accumula-
tion

As an alternative or complement to the bound of β presented in Section 9.4.7,
β can be estimated. First, the probability of workload depletion is estimated as
the mean of the upper and lower bounds.

p̂wd =
p↓wd + p↑wd

2
(9.33)

Then we estimate β according to

β̂(s)N = ξ(s)−
N−1∑
i=1

∑
h̃∈(s,i)

p↓in(s, h̃), (9.34)

where p̂wd is used instead of p↓wd in Equation (9.19) for the first accumulation
period. A new estimate is retrieved for each accumulation period. β of the first
period is estimated as:

1. Let the probabilities of the first task period be ξ.

2. Calculate the probability of carry over into s in the second period from all
Ci and M.

3. Set β̂(s) to the probability of being in the second period relative to the sum
of both periods, scaled with ξ(s).
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9.5 Iterative Workload Accumulation

We propose an iterative approach where workload periods are successively
accumulated. The process is illustrated in Figure 9.3 and ends when one of the
following stopping criteria is met:

1. The upper bounds of the workload depletion probability of all states have
turned from decreasing to increasing, or the lower bounds have turned from
increasing to decreasing.

2. A maximum number of task periods is reached.

The first condition is met if the workload depletion probability bounds con-
verge, or if the region within the bounds starts to grow. With each accumu-
lation period, a convolution is performed, potentially increasing the error in-
troduced by using the upper and lower bounding distributions in place of the
true convolution result. This is illustrated by the white space between the blue
area and the orange lines in Figure 9.6, and by the white space between the
green area and the orange lines in Figure 9.7. If the increase in this error is not
compensated by a sufficiently low probability of the associated accumulation
vectors, the bounding region of the workload depletion probability can start to
increase, and we stop at the period with the tightest bound.

The second condition is needed in the case where the bounds on the work-
load depletion probabilities or deadline miss probabilities diverge from the
beginning. This may be due to insufficient bandwidth provided to the task in
the CBS, or because the errors introduced are too large. The second condition
is also activated when we have a slow convergence of the workload depletion
probability bounds.

As an example we take a Markov model defined by:

S = 2, M =

(
0.9 0.1
0.7 0.3

)
, C = {N (20, 9),N (40, 16)}.

The stationary probabilities are 0.875 for state 1 and 0.125 for state 2. In
our example, the CBS is defined such that there are n = 4 server periods within
each task period, and the budget in each server period is Q = 8. The deadline
is defined by k = 8.

First, we use the bound on the probability of longer workload accumulation
as described in Section 9.4.7. We initialize the accumulation with one period
after workload depletion, and β to (0.1238, 0.0397), the probability of being
in states 1 and 2 respectively with workload carried over from at least one task
period. These probabilities are obtained from the simulation. In Figure 9.8 the
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Figure 9.8: Bounds and estimates on β for the two states in black, along with prob-
ability estimates of longer accumulation histories obtained from simulation in blue.
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Figure 9.9: The region between the upper and lower bounds/ estimates on the per-state
probability of workload depletion in the example, along with the estimates obtained
from simulation in red.

obtained bounds for beta for the two states as we add accumulation periods are
displayed in black. Estimated probabilities of longer accumulation histories
obtained from simulation are displayed in blue.

The upper and lower bounds of the probabilities of workload depletion ob-
tained with these values for β are shown in black in Figure 9.9, along with
estimates obtained by simulation shown as red lines. The workload accumula-
tion stops at the maximum number of task periods, 20.

In Figure 9.10 the bounds on the deadline miss probabilities during the
workload accumulation process of our example are displayed. The parts of the
second terms resulting from the sum over the accumulation vectors are shown
as dashed. In the example this sum approaches the pdm from simulation, and
the pessimism comes from the pessimism in β. These bounds are compared to
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Figure 9.10: The bounds and estimates on the deadline miss probabilities during the
workload accumulation process of the example, along with results from simulation.

the results from the simulation.
Using estimates on β as outlined in Section 9.4.8 in our example gives the

values displayed in Figure 9.8. Here the initial values of beta are taken as an
estimate of the probability of being in the second accumulation period for each
state.

Using these estimates of β to find upper and lower estimates of the prob-
abilities of workload depletion gives the results shown in Figure 9.9. The
workload accumulation process stops after 10 accumulation periods.

The estimates of the deadline miss probabilities for each state during the
workload accumulation process, along with the deadline miss probabilities
from the simulation, are shown in Figure 9.10. The parts stemming from the
second term of Equation (9.30) are dashed.

Comparing the two approaches, the bound on β is a safe overestimate, but
relies on having a bound or close estimate for the first accumulation period.
The estimate on β, however, is not a safe bound but can be initiated with a
rough estimate in the first accumulation period. Using the estimate of β results
in a lower first term in the deadline miss probability p↑dm calculation of Equa-
tion (9.30). In the example, this estimate is about 2.5 times higher than the
deadline miss ratio obtained in simulation, while the bound is about 5 times
higher.

9.6 Evaluation

9.6.1 Goal of the Evaluation

We aim to evaluate the proposed method of bounding and over-estimating the
deadline miss probability pdm for a task implementing a Markov Model, where
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the execution times of the jobs vary depending on the task’s state. In addition,
we aim to investigate the method’s sensitivity to the shape of the execution
time distribution.

For this purpose, we use a test program with a known Markov Chain struc-
ture. The deadline miss probability bounds and estimates calculated with the
proposed method are compared to deadline miss probabilities from simula-
tions, and to the deadline miss ratio obtained when running a task under the
Linux SCHED_DEADLINE scheduling policy that implements CBS based on
EDF. To investigate the sensitivity to the distribution shape, test programs with
two shapes of execution time distributions are implemented, one with Gaus-
sian and one with shifted/ translated exponential distributions. The Gaussian
distribution is used to evaluate the method with the conditions fulfilled. We
choose exponential distributions for comparison. With a lower bound on the
computation times, at which the probability density is highest and a wider tail
compared to the Gaussian distribution, it is chosen as a challenge to the pro-
posed method.

A test program with a three-state Markov chain structure is implemented
that activates jobs periodically. In each job, a state transition may be per-
formed, and different computations are performed depending on the current
state. Execution time traces are obtained from running the program under
FIFO scheduling. These traces are used to estimate the means and standard
deviations for the three states of the Markov model. They are also used to es-
timate the rate and translation parameter for the exponential distribution used
in the simulation for comparison with the exponential test program. The tran-
sition matrix is known from the test program implementation.

The Markov models obtained in this way are used with the methods de-
scribed in Section 9.4 to calculate the deadline miss probability bounds and
estimates. The maximum number of accumulation periods is set to 20. Three
different configurations of server budget and period ratios are used. For each of
these configurations, two relative deadlines are evaluated. The configurations
are listed in Table 9.2.

The test program is run under SCHED_DEADLINE with the different con-

Table 9.2: Server parameters.

Q (ms) n k1 k2

100 4 7 8

120 3 7 8

90 4 9 10
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figurations of server budget, period ratio, and deadline. The deadline miss
ratios are calculated and compared to the estimates.

A simulation is performed, where the Markov Model is used to generate
execution time samples for 106 task periods. Gaussian distributions with the
parameters from Table 9.3 are used in the simulation for comparison with the
Gaussian test case. Translated exponential distributions with translation and
rate parameters from Table 9.4 are used in the simulation for comparison with
the exponential test program. The workload in simulation is tracked according
to Equation (9.2). Deadline miss ratios for each state and the overall deadline
miss ratio are recorded.

9.6.2 Test Setup

A test program with three states has been implemented. The program executes
periodically, and jobs perform a state transition according to a transition ma-
trix, followed by a state-dependent computation with a pseudo-random vari-
ation. We evaluate two versions of the task, one where the execution times
of each state are distributed according to a Gaussian and one where they are
distributed according to an exponential distribution. That is, a number is gener-
ated from a Gaussian or exponential distribution with parameters depending on
the current state. An iteration of additions, modulo operations, and swaps are
performed in a small (100 integers) memory area, and the number of iterations
is proportional to the generated number. The test program versions are imple-
mented so that the means and standard deviations of the states’ distributions
are similar. The exponential distributions are shifted to accommodate this.
The test program contains a deadline miss counter, and at the end of each job,
a check for deadline miss is performed. The program activates 500 jobs be-
fore termination. The tests are performed on a Raspberry Pi 3B+ single-board
computer with Arch Linux ARM kernel 4.14.87 patched with PREEMPT_RT
4.14.87-49, configured with a fully preemptible kernel and timer frequency of
100Hz. The test program is pinned to a core set up as an exclusive cpuset,
and the scaling governor is set to performance.

9.6.3 Timing Traces and Markov models

Timing information is collected with the ftrace framework, trace-cmd is
run, recording sched_switch events. The execution time is calculated as
the time from the process is switched in until the time when it is switched out.
Executions of the program for collecting timing information are performed un-
der FIFO scheduling with maximum user-space priority. The traces are used



Paper C 123

for estimating means and standard deviations of the states. The first 50 execu-
tion time measurements are excluded because in some cases there have been
outliers in this region. The execution times from the traces are classified into
states by cutoff points at 250 ms and 400 ms. The means and standard devia-
tions need to be estimated. Although we know the parameters of the distribu-
tions to generate the random numbers, we do not know how these translate into
execution times. The means and standard deviations are calculated incremen-
tally. The first estimate uses the first execution time trace, then traces are added
until the addition of a trace changes all means and standard deviations by less
than 1%. This results in 7 traces being included in the estimate for the Gaus-
sian distributions and 9 traces for the exponential distribution. Histograms of
the traces can be seen in Figure 9.11.

The transition matrix of the test program is

M =

0.7 0.2 0.1
0.5 0.3 0.2
0.5 0.4 0.1

 , (9.35)

which gives stationary probabilities of 0.625, 0.25, and 0.125 for the respective
states. The means and standard deviations for the states are shown in Tables 9.3
and 9.4. In Table 9.4 the rate and translation parameters of the exponential
distribution are also shown. The rate parameter is σ−1, and the translation
parameter is µ− σ.

Histograms of all execution times from the traces are shown in Figure 9.11.
Gaussian distributions with the means and standard deviations are overlaid and
scaled with the stationary probabilities.

9.6.4 Evaluated Methods for Deriving a Deadline Miss Probability

In the evaluation, we compared four different methods for deriving the
deadline-miss probability. Those are:

• Linux-CBS : A deadline-miss ratio using a Linux CBS evaluation with a
SCHED_DEADLINE. For each evaluated combination of server budget Q,

Table 9.3: Characterization of the states of the Gaussian version traces.

State mean (ms) standard deviation (ms)
1 107.111 8.513

2 321.611 10.853

3 536.221 12.174
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Figure 9.11: Histograms of the execution times from the Gaussian (a) and exponential
(b) version FIFO traces with the Gaussian distributions used in the method and the
exponential distributions used in the simulation for (b) overlaid.

task to server period ratio n and the relative deadline to server period ratio k,
60 runs of the program under SCHED_DEADLINE are performed. Deadline
misses after the first 50 periods of each run are recorded, as there appears to
be an increased number of deadline misses in a run-in period. The bandwidth
is 50%.

• SIM: A deadline-miss probability derived with Markov chain simulation.
The obtained Markov models are used to simulate a sequence of 106 sam-
ples. For the Gaussian test program we use the Gaussian parameters in Ta-
ble 9.3, and for the exponential test program we use the rate and translation
parameters from Table 9.4. The output execution time sequence is analyzed
with the different configurations of server reservation, period ratio, and dead-
line as listed in Table 9.2. The workload depletion ratio and the deadline miss
ratio for each state are recorded.

• Bound: A safe bound on the deadline-miss probability, using the accumula-
tion process defined in Section 9.5 with the upper bound on β as defined in
Section 9.4.7.

• Estimate: An estimate of the deadline-miss probability, using the accumu-

Table 9.4: Characterization of the states of the exponential version traces.

State mean (ms) stddev (ms) rate (ms−1) translation (ms)
1 106.960 8.891 0.11248 98.0696

2 321.761 11.143 0.089742 310.6178

3 535.293 12.242 0.081688 523.0508
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Figure 9.12: Result from test program with Gaussian emission distributions.

lation process defined in Section 9.5 with the estimate on β as defined in
Section 9.4.8.

9.6.5 Results & Discussion

The deadline miss probability bounds and estimates pdm obtained during the
workload accumulation process are shown in Figures 9.12 and 9.13. Here, we
also show deadline miss ratios of simulation with the Markov Model and the
mean deadline miss ratios of the executions under SCHED_DEADLINE.

From the results shown in Figure 9.12, it is clear that the calculated bound
adds significant pessimism compared to the estimates. The pessimism in-
creases with 5 to 70 times when using the bounds on β compared to the es-
timates. Estimates and bounds are tightest for the state with the highest dead-
line miss probability. The pessimism in the overall case is 5 to 20 times higher
compared to state 3. We also see lower pessimism for the cases with lower
utilization and for shorter deadlines. In the case with β estimates and Q/n/k =
100/4/7 the pessimism in state 3 is 1%, but with parameters 120/3/8 it increases
to 40%.

When compared to the test with exponential execution time distributions
as shown in Figure 9.13, we see that as expected the shape of the execution
time distribution affects the deadline miss probability. When the assumption of
Gaussian distributions does not hold, in one case (state 3 with server/ deadline
parameters 100/4/7), the resulting deadline miss probability estimate, 3.11%,
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Figure 9.13: Result from test program with exponential emission distributions.

is lower than the deadline miss ratio obtained from simulation, 3.38%.

9.7 Conclusions and Future Work

In this paper, we proposed a workload accumulation scheme for upper bound-
ing or estimating the deadline miss probability of a task executing in a Con-
stant Bandwidth Server (CBS), having execution times modeled by an Hidden
Markov Model (HMM) with Gaussian emission distributions. The deadline
miss probability bounds and estimates obtained with the method are compared
with deadline miss ratios of tasks running under the Linux kernel implemen-
tation of CBS. The bounds and estimates are also compared with the results
from the simulation for each state separately and for the overall case. Tasks
with Gaussian and exponential execution time distributions are evaluated. The
comparison of the analytical and empirical results shows that the proposed
methods result in a safe upper bound, except in one experiment instance. With
Gaussian distributions all bounds and estimates are overestimates. The esti-
mate for the state with the highest DMP is optimistic in one experiment in-
stance performed on the exponential distribution. The estimate over all states
is still safe in this case.

The performed evaluation has focused on assessing the pessimism intro-
duced for a case where assumptions hold, and getting an initial estimate of the
feasibility of the approach when the shape of the emission distributions differs
from the Gaussian assumption. In future work, we intend to perform further
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evaluation. First, we will evaluate the method with a more realistic work-
load. Second, we will evaluate the scalability of the approach, in comparison
to the method proposed by Frías et al. [16, 5], and investigate the usefulness of
the proposed method in adaptive settings. The estimates could potentially be
used for monitoring changes in the deadline miss probability and adapting the
Quality-of-Service (QoS) level.
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