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Abstract

Real-time systems such as industrial robots and autonomous navigation vehicles
integrate a wide range of algorithms to achieve their functional behaviour. In certain
systems, these algorithms are deployed on dedicated computational resources
and exchange information over a real-time network. With the availability of
modern multi-processors, there has been a growing interest in transitioning towards
an integrated architecture where these algorithms can be executed on a shared
computational resource. The technology enabling such transition is focused around
the virtualization of the computational resources that can provide spatial isolation
and temporal partitioning to these software applications. Although many useful
solutions such as resource reservations and hierarchical scheduling have been
proposed to facilitate virtualization for real-time applications, the current state-of-
the-art addresses mostly those applications whose tasks can be specified according
to the periodic or the sporadic task model. As the computational demand of many
control algorithms can be adjusted flexibly at runtime, for example, by changing
their periods, they can be better modeled using the elastic task model, thereby
reducing the pessimism inherent with the periodic or the sporadic task model.

Therefore, in this thesis, we first propose a scheduling framework for elastic
real-time applications with reservations based on the periodic resource supply
for uniprocessor systems and then extend this solution to a multiprocessor sce-
nario where the reservation is based on the minimum parallelism supply form.
Concurrently, since many existing software applications have been designed to
run exclusively on dedicated single cores, we provide a systematic methodol-
ogy to guide the migration of an existing real-time software application from a
single-core to a multi-core platform with emphasis on architecture recovery of
the existing software and its transformation for implementation on a multi-core
platform. Furthermore, the advantages provided by cloud architectures for non-
real-time applications has prompted discussions around the possibility of providing
similar advantages to cyber physical systems such as industrial robots. Since vir-
tualization is a key enabler for such architectures, we investigate the advantages
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of a fog-based architecture over an existing architecture of the robot controllers
and identify key research challenges that need to be addressed for its successful
implementation.
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Chapter 1

Introduction

Integration of independent real-time applications on multiprocessor hardware
platforms has been extensively studied with solutions ranging from reservation
based scheduling to provide temporal partitioning[1, 2, 3] to cache partitioning
[4, 5] and memory controller designs[6] to improve performance. Similar to single-
core platforms, managing both overload and overrun situations [7] is also critical
in realization of open real-time systems[8] on multiprocessor hardware platforms.
For many real-time applications whose workload can be modelled as periodic or
sporadic tasksets[9], the techniques of reservation [10] and hierarchical scheduling
[11] can reduce the extent of the interference on co-executing applications while
providing sufficient CPU time for the application to meet its timing requirements.
Some real-time systems have temporal requirements that vary over time[7] and the
computational needs of their algorithms may depend on the state of the environment
the system is operating in [12]. In such cases, it may be necessary to describe the
application behaviour through more expressive task models than the sporadic or the
periodic task model for better resource usage[13]. For instance, the graph-based
task models can be used to describe every possible job type that a task can release
to improve resource utilization. Another task model that can be used to specify
the varying temporal requirements is the elastic task model[14, 15], where the
task parameters can be described as a range of values instead of a single value.
This flexibility can be utilized at runtime to control the computation time allocated
to the tasks depending on the existing system load. Moreover, the elastic task
model and the associated load modification algorithms [15, 16] have been used to
address the issue of overload management to ensure schedulability of soft real-time
applications [7]. Combined approaches for overrun management through resource
reservations and overload management through elastic task modelling and elastic
compression algorithms have been proposed in the literature for systems executing
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only a single application with multiple tasks [17, 18]. In the case of multiple
independent applications, the focus has primarily been restricted to modifying
the resource budget allocated to an application[19, 20, 21, 22, 23, 24]. As co-
execution of independent applications on shared hardware is at the heart of the
new distributed computing paradigms such as fog computing [25, 26]there is a
need to support not only periodic or sporadic real-time workloads but also flexible
workload models such as the elastic task model to address both overload and
overrun scenarios for efficient resource utilization.

Concurrently, for some industrial real-time systems it may be beneficial to reuse
much of their existing code even when transitioning to fog-based architectures.
In many cases, the software is optimized for performance on single-core systems
and new features are added in an incremental manner through the release of a
new version. Redeveloping the complete application for a given architecture in
such cases may not be an optimal choice. A systematic migration process that can
ensure successful realization of the benefits offered by the new hardware while
maximizing the reuse of existing code can be beneficial.

Furthermore, although fog and edge architectures have been proposed to bring
the benefits of cloud computing to systems with real-time requirements [27, 28],
their benefits over an existing architecture have not been investigated for a concrete
real-time system.

In this context, the work in this thesis extends the current techniques for
integrating elastic real-time applications on a shared hardware through a hierar-
chical scheduling framework where each elastic application is encapsulated in
a reservation server while utilizing the elastic task compression and decompres-
sion algorithms for overload management within the reservation. The framework
proposes the utilization of the periodic resource supply form reservation for unipro-
cessor systems and the minimum parallelism resource supply form combined with
the periodic resource supply model for multiprocessor systems. Concurrently,
since there are considerable differences between a single-core and a multi-core
platform, we provide a systematic methodology to guide the migration of any
existing controller software systems from the single-core to multi-core platforms
with emphasis on architecture recovery of the existing software system and its
transformation for implementation on a multi-core platform to meet its timing
requirements. Furthermore, to investigate the advantages of fog computing archi-
tectures for real-time systems, we propose a fog-based architecture for an industrial
robot controller software and compare it to an existing architecture of the controller
while identifying some of the research challenges that need to be addressed for the
fog architecture to be used in practice.
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Thesis outline This licentiate thesis contains two parts. Part I is an overview
of the thesis and is organized as follows. We first discuss background and related
work to the thesis in Chapter 2. In Chapter 3, we provide an overview of the
included papers and the contributions brought by each of them. In Chapter 4, we
present conclusions and an outline of future work towards a doctoral thesis. Part II
includes the collection of included papers.
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Chapter 2

Background and Related Work

This chapter provides an overview of the relevant background and work related to
contributions of the thesis.

2.1 Background

2.1.1 Temporal Isolation in Real-time Systems

Many cyber-physical systems are composed of algorithms that require different
amounts of computing times for different scenarios and are flexible with the
frequency with which they perform the computations. For example, in the case of
autonomous driving software, it was shown that the execution times for different
functions such as perception and planning varied considerably within the measured
samples[12]. For a robot manipulator, it was shown that periods of some of the
tasks were dynamically adjusted while still achieving the control objectives [29].
The need for adjusting the frequencies of some of the tasks of a mobile robot
to react to dynamically changing environments of the robot was highlighted in
[30]. In some scenarios, the variability can be upper bounded and the application’s
computational demand can be modeled as a periodic or sporadic taskset while
still ensuring schedulability. Even if computational demand was modelled with
worst-case assumptions, it is possible that at runtime, the values may deviate from
the assumed values, resulting in violation of the timing requirements. In such a
scenario, it is desirable to limit the impact of the deviation to only the tasks violating
the assumptions, rather than the entire application. For applications with dedicated
processors, this is normally achieved through temporal isolation[7] techniques such
as reservation servers[31] with each server providing the reserved computation
time to its associated task. For virtualized hardware platforms, temporal isolation
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is provided through hierarchical scheduling techniques[32, 33, 11]. Here each
application has its own local scheduler to schedule the tasks while associated
servers are scheduled on the physical processor by a system or global scheduler.
This approach ensures that any deviation of an application from its assumed values
can be limited to the application itself.

2.1.2 Overload Management in Real-time Systems

For some applications with varying computational demand, it may not be possible
to bound the demand with periodic or the sporadic model without over-provisioning
of the resources. In such cases, it may be more apt to consider mode-based schedu-
lability techniques [34, 35, 36]. For scenarios where such an approach cannot be
adopted, for example, due to difficulty in defining distinct modes, or when schedu-
lability cannot be guaranteed within a mode due to insufficient computational
resources, it may be necessary to introduce some form of overload management
techniques[14, 7], where the computational demand is adjusted at runtime to keep
the application schedulable.

The Elastic Task Model

The elastic task model [14, 15] was proposed to manage overload scenarios by
allowing the temporal parameters of each task to be defined through a range of
values. In case of an overload situation (either predicted or detected), the associated
elastic compression algorithms[16] adjust the computational demand of the tasks
by modifying the utilization of the tasks such that they are as close as possible to
their desired utilization while keeping the application schedulable. Algorithms
for applying the elastic task model in multiprocessor systems were proposed in
[37, 38, 39, 40].

Overload Management in Hierarchical Scheduling

In hierarchical scheduling, mode changes and overload situations are managed by
modifying the resource reservations [36, 41] and ensuring schedulability even dur-
ing the transition states [42]. In cases where there is sufficient spare capacity, the
bandwidth modifications can be applied without affecting the performance of co-
running applications or by considering their Quality-of-Service requirements[24].
An alternative mechanism to manage overload compared to bandwidth modifi-
cations is to adjust an application’s tasks such that the computational demand
can be satisfied within the existing reservation without affecting the performance
of the co-running applications. Such an approach has been considered in [18]
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where the system model considered allows only one task per reservation server.
In this thesis, we extend this concept to a hierarchical scheduling framework for
not only applications that require a reservation less than that of a single-core but
also for those applications whose computational demand requires a multiprocessor
reservation.

2.1.3 Software Migration and Multi-Core Platforms

The software for real-time systems undergoes continuous changes to meet the
demands of different stakeholders [43]. Software migration refers to modifications
of existing software, for example, when changing the hardware platform, or when
adopting a different architectural paradigm than the existing one, such as changing
the programming language [44] or when moving from native server deployments
to cloud-based deployments [45, 46]. In many cases, it is expected that the func-
tionality post migration shall be equivalent to that prior to migration. Moreover,
the migration should consider architectural transformations with evolvability for
long life-cycle systems as a criteria[47]. To manage such requirements, Sneed [48]
proposed a five-step re-engineering planning process for legacy systems. The
author highlights the need for creating measurable metrics to justify the effort
and the improvements achievable with the migration. As architectural paradigms
such as fog and edge computing have been proposed to provide benefits of cloud
computing to applications with real-time requirements, the real-time software may
need to run on shared multi-processor platforms supported by techniques such
as hierarchical scheduling and other overload management techniques discussed
previously. For many of the existing real-time systems, the software was developed
to run with optimal performance on single-core hardware platforms. Therefore,
for some applications, a complete redevelopment may be necessary to enable exe-
cution of the software on multi-processor platforms, while for some applications,
reuse of the existing code along with architectural modifications may be sufficient.
Since execution on multi-processors requires consideration of aspects such as
cache contention, shared memory buses and scheduling algorithms that take into
account the availability of multiple processors, a systematic approach is necessary
to guide the migration of the software for execution on multi-core platforms.

2.1.4 Fog Computing for Real-time Systems

Fog computing is a distributed computing paradigm that complements the cloud
platform by providing on-demand resources to applications that require low com-
munication latencies [26]. The low latencies are achieved by introducing an
intermediate layer of computational resources between the cloud and the edge
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of the network of real-time systems. The intermediate layer of computational
resources can be connected through a network such as TSN[27] and the computa-
tional hardware can be of any arbitrary capacity[28]. For real-time systems, it may
be necessary to reserve resources within the fog computing hierarchy including
those corresponding to communications [49]. Moreover, given its distributed na-
ture, the fog architecture remains susceptible to faults[50]. Furthermore, it inherits
similar challenges such as those for achieving predictable cloud computing and
virtualization[51]. Therefore, given the complexity associated with fog computing
solutions, a comparative analysis of existing system architectures of real-time sys-
tems with those based on fog-computing is necessary to evaluate the advantages
that can be achieved through fog-computing architectures.

2.2 Related Work

2.2.1 Hierarchical Scheduling

In a hierarchical scheduling framework, the computational demand of an applica-
tion is abstracted through a single interface that specifies the computation time to be
reserved along with the period with which it should be provided[11]. The reserved
computation time can be available to the application through different reservation
servers such as the periodic server and deferrable server [32]. The mechanism
for defining such an interface and the schedulability tests vary depending on the
scheduling policies employed for both local as well as global schedulers.

For single processor systems, Davis and Burns[32] provided an exact schedu-
lability test for a hierarchical system with fixed priority preemptive schedulers
(FP) for both local as well as global scheduling. They evaluated the schedulability
for the periodic, sporadic and the deferrable servers and showed that the periodic
server provides better schedulability compared to the deferrable and the sporadic
server models. Similarly, Zhang and Burns [33] provided schedulability analysis
when the earliest deadline first scheduling policy (EDF) was used as the local
scheduler while the global scheduling policy could either be FP or EDF. For com-
positional systems, Mok[52] proposed the regularity based resource supply model
and provided schedulability conditions for applications with either FP or EDF as
the local scheduling policy. Shin and Lee [53] proposed the periodic resource sup-
ply model to define guaranteed resource time to be provided to an application and
provided schedulability conditions when using FP or EDF as the local scheduling
policy. Easwaran et al. [54] generalized the periodic resource model and provide
methods to generate the optimal bandwidth interfaces and improve resource usage.
Dewan and Fisher[55, 56] proposed an algorithm to determine the optimal server
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parameters for the periodic resource model. Kim et al. [57] provide a method
to reduce the overhead associated with periodic resource model. Yang et al.[58]
consider the scheduling of mixed criticality tasks within a periodic resource model
with multiple estimates for the resource supply.

For multiprocessor reservations, Leontyev and Anderson proposed the mini-
mum parallelism supply form to schedule soft real-time tasks with no utilization
loss. Easwaran et al. [59] extend the periodic resource model through an addi-
tional parameter that specifies the maximum physical processors that can be used
to provide the reserved computation time at any given time. They considered
the schedulability of sporadic tasks within such a reservation using global EDF
[9] scheduling policy. Furthermore, they provided a transformation to generate
equivalent periodic tasks for the multiprocessor resource reservations (MPR) to
schedule them at the system level. Burmaykov et al. [3] proposed a generalization
of the MPR model to reduce the pessimism for bandwidth allocation and provided
schedulability conditions for both global EDF as well as global FP scheduling
policies. Yang and Anderson [60] provided conditions to preserve optimality of
the minimum-parallelism supply form even for hard real-time tasks. Pathan et al.
[61] propose an overhead aware interface generation method for multiprocessor
reservations for global FP scheduling policy.

Khalilzad et al. [21, 22, 41] proposed a feedback based adaptive resource
reservation scheme that adjusts the bandwidth of resource supply for variable tasks
to minimise deadline misses. Groesbrink et al.[24] consider a similar approach to
manage variable tasks where the bandwidth is modified such that each server gets
a minimum guaranteed supply, while any left-over spare capacity is used to satisfy
the requirements of applications whose bandwidth should be increased.

2.2.2 Software Migration

Many software processes have been proposed to address software evolution[47]
which is concerned with modifications of the software to accommodate different
requirements such as business needs, adoption of newer algorithms, change of
hardware platforms. Menychtas et al. [62] presented a framework called ARTIST,
a three-phase approach for software modernization focusing on migration towards
the cloud. They categorised the migration into three main phases, Pre-migration,
Migration and Modernisation and Post-migration. During the pre-migration phase,
they proposed a feasibility study to address the technical and economic points
of view. During the migration and modernisation phase, the actual migration is
carried out and finally during the Post-migration phase, the system is deployed
and validated. Erraguntla et al. [63] discussed a three phase migration method
consisting of analysis, synthesis and transformation phases to migrate single-core
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to multi-core parallel environments. During the analysis and synthesis phase,
the design of the existing software is recovered while recommendations for the
multi-core environment are made during the transformation phase of the migration
method. They also provided a reverse engineering toolkit called RETK for the anal-
ysis and synthesis phases. Battaglia [64] presented the RENAISSANCE method for
re-engineering a legacy system. The method focuses on planning and management
of the evolution process. Forite et al. [65] proposed the FASMM approach to
better manage the migration and to record and reuse the knowledge gained during
the migration in other projects. Reussner et al. [66] and Wagner [67] proposed
model-driven approaches to software migration. Her, the approach requires reverse
engineering the system using automated tools and capturing the information in
modelling languages and from there on, use model-driven techniques for further
maintenance of the system. Most of these works provide a general approach to
software migration. In this thesis, we tailor these approaches for migration of
real-time systems to multi-core platforms.

2.2.3 Fog Computing for Industrial Systems

Authors of [68, 69] have discussed fog-based solutions for general robotic systems
and highlighted the advantages of using fog-based architecture for such applications.
While Hao et al. [70] provided a generic software architecture for fog computing,
Faragardi et al. [71] provided a time predictable framework for a smart factory
integrating the fog and cloud layers. Skarin et al. [72] developed a test bed to study
the feasibility of a fog-based approach for control applications, while Pallasch
et al. [73] and Mubeen et al. [74] showed the feasibility of using an edge based
solution for combining cloud and field devices. Ning et al. [75] considered fog
computing in the context of smart traffic management. Barzegaran et al.[76]
provide an industrial use-case with electric drives as fog nodes.
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Chapter 3

Research Contributions

This chapter introduces the goals of the thesis in Section. 3.1 and provides an
overview of the research process in Section. 3.2. An overview of the thesis contri-
butions and a mapping of the contributions of this thesis to the sub-goals is then
discussed in Section. 3.3.

3.1 Research Goals

The overall goal of the thesis is to propose and evaluate solutions to integrate inde-
pendent elastic real-time applications on fog computing platforms while satisfying
their temporal requirements. To achieve this, we define the following sub-goals:
RG1: Provide a solution to schedule elastic real-time applications on virtualized
single-core and multi-core platforms.

The fog layer in the fog computing paradigm is expected to host a wide spectrum
of independent applications including those with real-time requirements. As the
resource demand of the applications can vary between those that need only limited
computation time on a single core and those that require multiple processors
for achieving their functional behaviour, we formulate the research goal RG1 to
address the scheduling of the applications on both single-core as well multi-core
platforms.
RG2: Propose solutions to guide the migration of existing real-time software
applications from a single-core to multi-core platforms.

Since many of the existing real-time applications are optimized for single-
core and networked system architectures, it may be necessary to transform
their architectures for multi-core platforms before they can be deployed in a
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fog computing architecture. To support such transformation, we formulate the
research goal RG2.
RG3: Evaluate the advantages of a fog-based architecture for industrial robotic
systems and identify research challenges.

Industrial robots are widely used in many different environments, espe-
cially in the automotive industry. The system architecture of some of the
existing robot controllers follows a networked approach where the software is
distributed over multiple single-core platforms. To investigate the advantages
of fog computing architecture over such an existing architecture, we formulate
the research goal RG3. Furthermore, we extend the scope of this goal to identify
research challenges associated with fog computing architectures to enable
realization of such an architecture in practice.

3.2 Research Process

The thesis results were developed following the hypothetico-deductive method
[77] and consisted of the following four steps.

• Problem Definition - Understand field of topic through literature review,
systematic survey, state-of-art and state-of-practice study and defining the
scope of the problem.

• Idea Development - Iterative development of solutions to the defined prob-
lem.

• Implementation - Converting the idea and the theory into an artefact.
• Evaluation - Evaluate the idea and its implementation and draw conclusions

and identify its limitations.

Problem Definition In this thesis, we define the problems for our research to
achieve the research goals described in Section. 3.1. The problems were based on
literature review and inputs from industrial experts.

Idea Development and implementation The solutions to the identified problems
were iteratively refined by evaluating the solutions using different research methods.
A mapping of the different research methods used to achieve the research goals is
provided in Table. 3.1.
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Evaluation The evaluation of the solutions developed for each of the research
goals was done through a comparative analysis of existing state-of-art solutions for
RG 1, and state-of-practice for RG 3. The evaluation of the methodology developed
for RG 2 was evaluated using a survey-based approach, which is described in detail
in Paper C (Chapter. 7).

Research Methods Research Goals
State-of-Art Study RG1, RG 2, RG 3
State-of-Practice Study RG 2, RG 3
Simulation RG 1
Case study RG 2, RG 3
Survey RG 2

Table 3.1. Mapping of Research Methods and Research Goals

RG1 RG2 RG3
C1 X
C2 X
C3 X
C4 X

Table 3.2. Mapping between the Contributions C1 through C4 and the research goals RG1through RG3.

3.3 Technical Contributions

Here we outline the technical contributions of the thesis and then summarize each
of the individual contributions. A mapping of the research goals with the technical
contributions is shown in Table.3.2.
C 1: A reservation based scheduling framework for executing elastic real-time

applications on a uniprocessor system.
C 2: A reservation based scheduling framework for executing elastic real-time

applications on a multiprocessor system.
C 3: A systematic methodology to migrate from a single-core to a multi-core

architecture with maximum software reuse and minimal re-engineering
effort for real-time systems.
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C 4: A fog-based architecture for industrial robotic systems and identification of
research challenges.

C 1: A reservation based scheduling framework for executing elastic
real-time applications on a uniprocessor system.

This contribution addresses the research goal RG 1 and is provided in Paper A.
Here, we consider a system model where an application is modeled according to
the elastic task model[14] and is assumed to execute within a reservation server.
The reservation server is assumed to be available to the application according to
the periodic resource supply form (PRM) [11]. The application also includes a rate
monotonic fixed priority scheduler or an Earliest-Deadline-First dynamic priority
scheduler. The design parameters of the reservation server, i.e., the budget and the
period of the server are determined by considering the initial desired utilization
and periods of the application tasks. Whenever an application task requests a
change in its period during runtime, the reserved server bandwidth will have to
be updated. Such a bandwidth update can be performed without affecting the
bandwidth of other reservations if there’s sufficient spare capacity in the system.
However, in the absence of sufficient spare capacity, there may be no option but
to adjust the bandwidth of all the other co-running servers. To minimise such
bandwidth modifications, a utilization modification algorithm, a variant of the
original elastic compression algorithm[14], is integrated within the application
to generate a new set of periods for the application’s tasks while ensuring that
they satisfy the constraints defined for each task. Since the resource supply is
assumed to be provided according to the PRM form, there exist a possibility that
in the worst-case, the resource is unavailable for the application for a specific
duration. If any of the tasks have their periods that are less than this is unavailable
duration, there may be no but to adapt the bandwidth of the server. However, if
no tasks have their periods less than or equal to the unavailable duration, and the
newly generated periods satisfy a utilization based schedulability test, the server
bandwidth can remain unchanged, thereby limiting the need for server bandwidth
adjustment. The evaluation in Paper A shows that the proposed approach works
well for many tasksets, i.e., the utilization adjustment within the application can
keep the tasks schedulable within the reservation, but for certain tasksets, the
bandwidth readjustments may be unavoidable and the bandwidth will have to be
readjusted for every period change request.
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C 2: A reservation based scheduling framework for executing elastic
real-time applications on a multiprocessor system.

This contribution addresses the research goal RG 1 and is provided in Paper B. Here,
we consider a system model where an application is modeled according to the elastic
task model and is assumed to execute within a reservation server. The reservation
server provides the resource supply to the application tasks according to the
multiprocessor minimum-parallelism resource supply form[2, 60]. This reservation
form provides the application with m fully dedicated processors and at most one
partial processor. The partial processor is assumed to be made available according
to the periodic resource supply form. Each reservation includes a local scheduling
policy to schedule the application tasks. In paper B, the partitioned EDF scheduling
policy is used for scheduling the application’s tasks within the reservation. Similar
to the uniprocessor scheduling framework discussed previously, the reservation
parameters are decided based on the initial desired desired utilization and period
of the application’s tasks. Once the reservation parameters have been decided,
the objective is to minimize the frequency of modifications of these parameters.
To do so, whenever a task requests for a change in its period, the utilization
modification algorithm considers only those tasks that share the processor with
the task requesting the change and tries to generate new periods while satisfying
the constraints of each of those tasks. If no solution is found, the algorithm re-
partitions the tasks among different processors including the partial processor. The
re-partitioning can be done according to any reasonable allocation scheme [78].
In paper B, the evaluation is done using the first-fit approach. only if the re-
partitioning approach fails, the bandwidth of the reservation is considered for
modification. The modification can either be in the form of modifying the partial
processor bandwidth or the provisioning of a new fully dedicated processor if
possible. The evaluation in paper B shows that the proposed approach can satisfy
up to ninety four percent of the requests for period adaptations using the per-core
utilization modification scheme and hundred percent of requests when combined
with the re-partitioning step.

C 3: A software engineering methodology to migrate legacy real-time
systems to multi-processor platforms

This contribution addresses research goal RG 2 and constitutes the content of paper
C. Many of the existing industrial real-time systems have their software developed
for execution on single-core platforms and for realizing complex functionality they
tend to rely on a network of multiple single-core devices. With the availability
of modern multiprocessor platforms, the network based system architecture can
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be replaced by an integrated approach where the functionality can be executed
on the same hardware platform with reduced communication latencies. While
some systems may benefit from a complete redevelopment process targeting the
multiprocessor platforms, some others can benefit from reuse of already devel-
oped code rather than a complete redevelopment. Doing so successfully however
requires a well defined methodology. In paper C, we propose systematic approach
that defines a series of processes to be adopted to be able to reuse existing code
on a multiprocessor platforms and review some of the available tools that can
be utilized during this transition. The proposed approach is tailored for systems
with real-time requirements and provides a three-stage workflow starting from
architecture migration, followed by implementation level processes, and finally
the validation of the transformed architecture. The validity of this approach is
evaluated using a survey. The survey was designed according to the guidelines
in [79] for survey-based research. The evaluation was defined to address the
objectives of feasibility, usability and usefulness of the proposed methodology.
The results of the survey indicated that although the proposed approach satisfied
the evaluation objectives, it may not be generally applicable to all real-time systems
and that the methodology should be adapted for individual cases.

C 4: A fog-based architecture for industrial robotic systems

This contribution addresses the research goal RG 3 and is the main content of
paper D. Fog computing has been proposed as an extension of the cloud computing
paradigm that introduces an intermediate layer of computational resources between
the edge of a network and the cloud resources to reduce the communication laten-
cies between applications at the edge and the cloud, thus making it suitable for time
sensitive real-time applications. While the benefits of fog computing architectures
were evaluated in the context of non real-time systems, this contribution highlights
some of the benefits that can be achieved by adopting the fog-based architecture
for industrial robotic system. The benefits were illustrated through a comparative
study that analysed an existing robotic system and identified some of its limitations.
Based on the analysis, a fog-based architecture was proposed that addressed these
limitations. The proposed fog architecture moved many of the existing system
functionality from a dedicated hardware platform to computational resources in
the fog layer. However, as the fog computing paradigm is relatively new, there
remain considerable issues that need to be investigated for implementing such an
architecture in practice. Therefore, a set of research challenges were identified
relating to resource isolation and virtualization for integrating independent appli-
cations in the fog layer and orchestration of the real-time workload among the fog
computing resources for better efficiency and performance.
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3.4 Included papers

Paper A

Title: Scheduling Elastic Applications in Compositional Real-Time Systems [80]
Authors: S. M. Salman, S. Mubeen, F. Markovic, A. V. Papadopoulos, and T.
Nolte
Status: published at ETFA 2021
Abstract: Many real-time applications have functional behaviour that requires
variability in timing properties at run- time. The elastic task model provides a
convenient mechanism to specify and encapsulate such variability and enables the
modification of an application’s periods during run-time to keep the application
schedulable. Additionally, reservation-based scheduling techniques were proposed
for the same purpose of taming unpredictability of timing variations, but with a
different solution, i.e., by providing the spatial and temporal isolation for executing
independent applications on the same hardware. In this paper, we combine the
two approaches by proposing a two-level adaptive scheduling framework which
is based on the elastic task model and the compositional framework based on
the periodic resource model. The proposed framework minimises the number of
requests for bandwidth adaption at the reservation (system) level and primarily
enables schedulability by accounting for the application’s elasticity by adjusting
the periods. The motivation for this design choice is to rather localise the effect
of the modifications within the application, without necessarily affecting all the
applications at the system level compared to the changes made at the reservation
level. The evaluation results show that the local application changes may often be
enough to solve the problem of variability, significantly reducing the number of
bandwidth adjustments, and therefore reducing the potential negative impact on
all the applications of a system.

Paper contributions: An adaptive scheduling framework for elastic real-time
applications in a compositional system for a single core processor.

My role: I was the main driver of the work under supervision of the co-authors.

Paper B

Title: Multi-processor scheduling of elastic applications in compositional real-
time systems
Authors: S. M. Salman, A. V. Papadopoulos, S. Mubeen, and T. Nolte
Status: Published in Journal of Systems Architecture, (December 2021)
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Abstract: Scheduling of real-time applications modelled according to the periodic
and the sporadic task model under hierarchical and compositional real-time systems
has been widely studied to provide temporal isolation among independent applica-
tions running on shared resources. However, for some real-time applications which
are amenable to variation in their timing behaviour, usage of these tasks models
can result in pessimistic solutions. The elastic task model addresses this pessimism
by allowing the timing requirements of an application’s tasks to be specified as
a range of values instead of a single value. Although the scheduling of elastic
applications on dedicated resources has received considerable attention, there is
limited work on scheduling of such applications in hierarchical and compositional
settings.

In this paper, we evaluate different earliest deadline first scheduling algorithms
to schedule elastic applications in a minimum parallelism supply form reservation
on a multiprocessor system. Our evaluation indicates that the proposed approach
provides performance comparable to the current state-of-art algorithms for schedul-
ing elastic applications on dedicated processors in terms of schedulability.

Paper contributions: A scheduling framework for elastic applications that
require a multi-processor reservation.

My role: I am the main driver of the work under supervision of the co-authors.

Paper C

Title: A systematic methodology to migrate complex real-time software systems
to multi-core platforms[81]
Authors: Salman, S. M., Papadopoulos, A. V., Mubeen, S., and Nolte, T.
Status: Published in Journal of Systems Architecture, (August 2021)
Abstract: This paper proposes a systematic three-stage methodology for migrat-
ing complex real-time industrial software systems from single-core to multi-core
computing platforms. Single-core platforms have limited computational capa-
bilities that prevent integration of computationally demanding applications such
as image processing within the existing system. Modern multi-core processors
offer a promising solution to address these limitations by providing increased
computational power and allowing parallel execution of different applications
within the system. However, the transition from traditional single-core to contem-
porary multi-core computing platforms is non-trivial and requires a systematic and
well-defined migration process. This paper reviews some of the existing migration
methods and provides a systematic multi-phase migration process with emphasis
on software architecture recovery and transformation to explicitly address the
timing and dependability attributes expected of industrial software systems. The
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methodology was evaluated using a survey-based approach and the results indi-
cate that the presented methodology is feasible, usable and useful for real-time
industrial software systems.

Paper contributions: The main contribution of this work is a systematic
migration methodology and its evaluation by industry experts.

My role: I was the main driver of the work under supervision of the co-authors.

Paper D

Title: Fogification of industrial robotic systems: Research challenges.[82]
Authors: S. M. Salman, V. Struhar, A. V Papadopoulos, M. Behnam, and T. Nolte
Status: Published at IoT-Fog 2019 - Proceedings of the 2019 Workshop on Fog
Computing and the IoT.
Abstract: To meet the demands of future automation systems, the architec-ture of
traditional control systems such as the industrial robotic systems needs to evolve and
new architectural paradigms need to be investigated. While cloud-based platforms
provide services such as computational resources on demand, they do not address
the requirements of real-time performance expected by control applications. Fog
computing is a promising new architectural paradigm that complements the cloud-
based platform by addressing its limitations. In this paper, we analyse the existing
robot system architecture and propose a fog-based solution for industrial robotic
systems that addresses the needs of future automation systems. We also propose
the use of Time-Sensitive Networking (TSN) services for real-time communication
and OPC-UA for information modelling within this architecture. Additionally, we
discuss the main research challenges associated with the proposed architecture.

Paper contributions: Proposed a Fog-based architecture for industrial robotic
systems.
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Chapter 4

Conclusion

In this thesis, we considered the problem of scheduling real-time applications with
variable timing requirements on virtualized hardware platforms and proposed a
scheduling framework that minimizes the frequency of bandwidth modifications
at the system level on uniprocessor and multiprocessor platforms. Simultaneously,
we considered the issue of reusing existing application code developed for single-
core platforms in multi-core platforms and proposed a systematic methodology to
guide the migration with emphasis on architecture recovery and its transformation.
The methodology was validated using a survey-based approach for its feasibility,
usefulness and usability. Furthermore, we considered the limitations of an existing
system architecture of an industrial robot controller and proposed a fog-based
architecture that addresses these limitations and identified some of the research
challenges that should be addressed to implement such an architecture in practice.

For future work, we will investigate the worst case performance of the proposed
scheduling framework and consider alternative reservation policies such the GMPR
interface [3] and the applicability of the utilization modification algorithms not
only at the application level but also at the system level to improve the resource
utilization and quality-of-service of the applications.
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Abstract

Many real-time applications have functional behaviour that requires
variability in timing properties at runtime. The elastic task model provides
a convenient mechanism to specify and encapsulate such variability and
enables the modification of an application’s periods during run-time to keep
the application schedulable. Additionally, reservation-based scheduling
techniques were proposed for the same purpose of taming unpredictability of
timing variations, but with a different solution, i.e., by providing the spatial
and temporal isolation for executing independent applications on the same
hardware.

In this paper, we combine the two approaches by proposing a two-level
adaptive scheduling framework which is based on the elastic task model
and the compositional framework based on the periodic resource model.
The proposed framework minimises the number of requests for bandwidth
adaption at the reservation (system) level and primarily enables schedula-
bility by accounting for the application’s elasticity by adjusting the periods.
The motivation for this design choice is to rather localise the effect of the
modifications within the application, without necessarily affecting all the
applications at the system level compared to the changes made at the applica-
tion level. The evaluation results show that the local application changes may
often be enough to solve the problem of variability, significantly reducing
the number of bandwidth adjustments, and therefore reducing the potential
negative impact on all the applications of a system.
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5.1 Introduction

Many industrial real-time systems such as robot controllers have real-time re-
quirements that are flexible to variability in execution times of the tasks, and the
frequency of the task invocations[1]. For instance, Simon et al. [2] provided a
feedback-based scheduling algorithm for computed torque control of an industrial
arm, where the frequency of the dynamic compensation tasks, such as that of
gravity and Coriolis compensation, was regularly adapted to meet both the control
objectives as well as the schedulability of the system tasks. Buttazzo et al. [3] pro-
posed the elastic task model to capture such dynamic behaviour of the tasks where
the schedulability of the system is managed by adapting the frequencies of the tasks.
Recently, modern system architectures based on fog and cloud computing concepts
have been proposed to improve the performance of robots [4, 5]. A key idea behind
such architectures is to exploit the improved computation capabilities offered by
the processors by executing independent applications on the same hardware, e.g.,
running multiple instances of the robot controller software to control different
robots on the same processor. Since the execution of independent applications re-
quires temporal and spatial isolation, the concepts of virtualization and hierarchical
scheduling, based on reservations, provide the necessary infrastructure to enable
such a requirement. While there exist many solutions to schedule adaptive tasks of
independent applications in a hierarchical scheduling approach [6, 7, 8, 9], most of
them focus on modifying the reservation parameters according to the application
demands, rather than adapting the application behaviour to a fixed reservation
bandwidth. A disadvantage of modifying the reservation parameters according
to the application demands is that the performance of another independent ap-
plication co-executing on the same processor may be unnecessarily affected. By
making the applications adapt to a fixed reservation bandwidth, we can limit the
impact on other applications running on the same processor. However, there may
be instances where the local adaptation of the application can fail, e.g., due to
insufficient bandwidth, compelling a bandwidth modification. Therefore, to meet
the aforementioned requirements, we propose a two-layered adaptive approach
to schedule applications specified according to the elastic task model within the
compositional real-time framework based on the periodic resource model [10].
Concretely, we address the following questions:

Q1 Given an application with elastic tasks, what is a feasible bandwidth reser-
vation according to the periodic resource model?

Q2 Given a fixed bandwidth reservation according to the periodic resource
model, how can the elastic application adapt its frequencies to remain schedu-
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lable?
Q3 Given an elastic application, can a schedulable reservation be found if the

application requests for a modified bandwidth reservation?
We address Q1 by assuming that an application specifies initial desired frequen-

cies for each of its tasks and then uses those values to identify a feasible bandwidth.
We address Q2 by modifying the application task frequencies whenever there
is an overload or an application’s task requests a different frequency such that
the application satisfies the schedulability conditions under the periodic resource
model. We address Q3 by checking if the system-level schedulability is satisfied
for the modified bandwidth reservation.

We provide the system model and discuss the necessary background on elastic
tasks and the periodic resource model in Section 5.2, followed by the proposed
solution in Section 5.3. We present the evaluation of our approach in Section 5.4
and the related work in Section 5.5. Finally, Section 5.6 concludes the paper.

5.2 Proposed System Model

This section presents the system model of the two-level compositional scheduling
framework for uniprocessor systems. At the application level, we consider a
real-time application specified according to the elastic task model with implicit
deadlines(See Section. 5.2.1). We assume that each application provides a local
scheduler, based on either fixed-priority preemptive scheduling implementing Rate
Monotonic (RM) priority assignment or dynamic-priority preemptive scheduling
implementing the Earliest Deadline First (EDF) policy. At the system level, we
assume that the CPU resource is made available to each application according to
the Periodic Resource Model (PRM) [10](See Section. 5.2.2).

5.2.1 The Basic Elastic Task Model

Buttazzo et al. [3, 11] proposed the elastic task model for applications whose tasks
can have an adaptive temporal behaviour to address overload situations as well as
requests for starting new tasks or modifying the task periods. Under this model,
whenever there is an overload or a task requests a new period, the utilization
of the remaining tasks is adjusted to keep the overall application’s utilization
under an upper-bound value for a given scheduling algorithm. For example, if the
application tasks are scheduled according to EDF, then the application utilization
bound is set to 1 and the utilization values of the individual tasks are adjusted
accordingly. While the elastic task model can be applied to applications that have
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computation time variability as well as period variability, in this paper, we will
only consider applications with period variability.

Formally, we define an elastic application 𝐀 as a set of 𝑛 elastic tasks 𝜏𝑖 =
{𝐶𝑖, 𝑇 𝑚𝑖𝑛

𝑖 , 𝑇 𝑚𝑎𝑥
𝑖 , 𝑇 𝑑

𝑖 , 𝑒𝑖}, where 𝐶𝑖 is the Worst-Case Execution Time (WCET)
of the task 𝜏𝑖. 𝑇 𝑚𝑖𝑛

𝑖 and 𝑇 𝑚𝑎𝑥
𝑖 specify the minimum and the maximum inter-

arrival time between consecutive jobs of 𝜏𝑖. 𝑇 𝑑
𝑖 represents the desired period

of 𝜏𝑖. The elastic co-efficient 𝑒𝑖 represents the flexibility of 𝜏𝑖 to change. For
instance, 𝑒𝑖 can be defined to be in the range [0, 1], where 𝑒𝑖 = 0 indicates that
the 𝑇 𝑚𝑖𝑛

𝑖 = 𝑇 𝑑
𝑖 = 𝑇 𝑚𝑎𝑥

𝑖 and that this task’s period cannot be modified, and 𝑒𝑖 = 1
indicates that the task’s period can be modified to take up values upto its maximum
period. We use 𝑇𝑖 (without any postscript) to indicate the current inter-arrival time
of 𝜏𝑖. An example of an elastic taskset is shown in the Table 5.1. while the task
𝜏1 can execute at its maximum period, the task 𝜏5 can only execute at its desired
period.

Table 5.1. An elastic Task set
Task ID WCET 𝑇 𝑚𝑖𝑛

𝑖 𝑇 𝑑
𝑖 𝑇 𝑚𝑎𝑥

𝑖 𝑒𝑖
𝜏1 4 40 120 240 1
𝜏2 7 40 80 360 0.75
𝜏3 10 240 240 480 0.5
𝜏4 9 200 240 600 0.25
𝜏5 8 40 40 40 0

The utilization of a task 𝜏𝑖 is given by 𝑈𝑖 =
𝐶𝑖
𝑇𝑖

. Further, the minimum and
maximum utilization of each task is represented by 𝑈𝑚𝑖𝑛

𝑖 = 𝐶𝑖
𝑇 𝑚𝑎𝑥
𝑖

and 𝑈𝑚𝑎𝑥
𝑖 = 𝐶𝑖

𝑇 𝑚𝑖𝑛
𝑖respectively. At run-time, the utilization of a task is kept as close as possible to

a desired utilization 𝑈𝑑
𝑖 = 𝐶𝑖

𝑇 𝑑
𝑖

. The desired application utilization is given by
𝑈𝑑 =

∑𝑛
𝑖=1 𝑈

𝑑
𝑖 . Similarly, the minimum and maximum application utilization

is given by 𝑈𝑚𝑖𝑛 =
∑𝑛

𝑖=1 𝑈
𝑚𝑖𝑛
𝑖 and 𝑈𝑚𝑎𝑥 =

∑𝑛
𝑖=1 𝑈

𝑚𝑎𝑥
𝑖 . If a task requests for

a change in its current period, its desired utilization 𝑈𝑑
𝑖 is updated. An elastic

application is said to be schedulable if 𝑈𝑑 ≤ 𝑈 𝑢𝑏, where 𝑈 𝑢𝑏 is the utilization
upper-bound for a given scheduling algorithm. It is assumed that the deadline is
elastic-implicit. i.e., the relative deadline of each job of an elastic task is equal to
its current period at runtime.

Elastic Compression Algorithm At runtime, if a task exceeds its execution
time or requests for a change in its period, the application is made schedulable
by modifying the periods of the application’s tasks to accommodate the new
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values and ensuring that the total utilization of the application’s tasks is below
the schedulable utilization bound. This is done according to the original task
compression algorithm proposed by Buttazzo et al. [3] and is reproduced here as
Algorithm 1. It takes as input the elastic application and the maximum schedulable
utilization bound. It computes the minimum utilization of the taskset and compares
it to the schedulable utilization bound. If the minimum utilization of the elastic
application exceeds the schedulable utilization bound, it immediately exits and
returns a failure. Otherwise, it iterates through each task of the application and
depending on the elastic coefficients and the current period 𝑇𝑖 of each task, it
separates the tasks into two disjoint sets 𝐀𝐟 and 𝐀𝐯. The set 𝐀𝐟 contains all the
tasks whose utilization values are fixed, i.e., the tasks with elastic coefficients set
to 0 and tasks executing with their maximum period values. The set 𝐀𝐯 contains
the remaining tasks whose utilization can be varied. Further, 𝑈𝑓 represents the
sum of the utilization of the tasks in 𝐀𝐟 , while 𝐸𝑣 represents the sum of the elastic
coefficients of tasks in 𝐀𝐯. For each task in 𝐀𝐯, its utilization value is scaled
according to the ratio of the elastic coefficient and the sum of all the coefficients
in 𝐀𝐯 (Line 21). A new task period 𝑇𝑖 is then assigned to the task. If the new task
period exceeds the 𝑇 𝑚𝑎𝑥

𝑖 value, it is set equal to 𝑇 𝑚𝑎𝑥
𝑖 . If this happens, the task 𝜏𝑖

is added to the set 𝐀𝐟 and the process is repeated. The algorithm returns a feasible
taskset if either all the tasks have reached their maximum period or if all the tasks’
periods have been updated such that they are schedulable. We use this algorithm
as a part of our proposed solution (Section 5.3).

5.2.2 Periodic Resource Model

Lee et al. [10] proposed the compositional scheduling framework based on the
periodic resource model to support the development of component-based hierarchi-
cal software systems. In this framework, the computational resource is described
as a periodic resource model Γ(Θ,Π), where Θ is the periodic resource allocation
time and Π is the resource period. Essentially, the periodic resource Γ provides an
application 𝐀 with Θ time units of CPU time every Π time units. The worst case
resource supply of the periodic resource model is shown in Fig. 1. The utilization
of the resource supply is defined as 𝑈Γ = Θ

Π
.

Generating the Resource Supply Parameters we use the method described in
Section. 6 of [10] to generate the resource supply parameters Θ and Π, such that an
application 𝐀, modeled as a set of 𝑛 periodic tasks with implicit deadlines, where
each task modeled as 𝜏𝑖 = {𝐶𝑖, 𝑇𝑖} is schedulable (under EDF or RM scheduling
policy). According to the compositional framework, Given the smallest period of
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Algorithm 1 Task_Compress()
1: function TASK_COMPRESS(𝐀, 𝑈 𝑢𝑏)
2: 𝑈𝑑 =

∑𝑛
𝑖=1

𝐶𝑖
𝑇 𝑑
𝑖

3: 𝑈𝑚𝑖𝑛 =
∑𝑛

𝑖=1
𝐶𝑖

𝑇 𝑚𝑎𝑥
𝑖

4: if 𝑈 𝑢𝑏 < 𝑈𝑚𝑖𝑛 then
5: return Infeasible
6: end if
7: OK = 0
8: while OK= 0 do
9: 𝑈𝑓 = 0

10: 𝐸𝑣 = 0
11: for each 𝜏𝑖 in 𝐀 do
12: if 𝑒𝑖 == 0 or 𝑇𝑖 == 𝑇 𝑚𝑎𝑥

𝑖 then
13: 𝑈𝑓 = 𝑈𝑓 + 𝑈𝑖
14: else
15: 𝐸𝑣 = 𝐸𝑣 + 𝑒𝑖
16: end if
17: end for
18: OK = 1
19: for each 𝜏𝑖 in 𝐀𝐯 do
20: if 𝐸𝑖 > 0 and 𝑇𝑖 < 𝑇 𝑚𝑎𝑥

𝑖 then
21: 𝑈𝑖 = 𝑈𝑑

𝑖 − (𝑈𝑑 − 𝑈 𝑢𝑏 + 𝑈𝑓 ) ∗
𝑒𝑖
𝐸𝑣

22: 𝑇𝑖 =
𝐶𝑖
𝑈𝑖23: if 𝑇𝑖 > 𝑇 𝑚𝑎𝑥

𝑖 then
24: 𝑇𝑖 == 𝑇 𝑚𝑎𝑥

𝑖
25: OK = 0
26: end if
27: end if
28: end for
29: end while
30: return Feasible
31: end function
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Figure 5.1. Resource supply of a Periodic Resource Model.

the application, 𝑇 𝑚𝑖𝑛, the application is schedulable under RM scheduling policy
if the resource supply utilization satisfies Eq. (5.1) (Eq. 23 in [10]).

𝑈Γ,𝑅𝑀 (𝑘) =
𝑈𝐀

log
(

2𝑘+2(1−𝑈𝐀)
𝑘+2(1−𝑈𝐀

) , (5.1)

where,
𝑘 = 𝑚𝑎𝑥{𝑘 ∈ ℤ|(𝑘 + 1)Π − Θ < 𝑇 𝑚𝑖𝑛} (5.2)

Similarly, the application is schedulable under EDF scheduling policy if the
resource supply utilization satisfies Eq. (5.3) (Eq. 21 in [10]).

𝑈Γ,𝐸𝐷𝐹 (𝑘) =
(𝑘 + 2).𝑈𝐀
𝑘 + 2(𝑈𝐀)

, (5.3)

where,
𝑘 = 𝑚𝑎𝑥{𝑘 ∈ ℤ|(𝑘 + 1)Π − Θ − 𝑘Θ

𝑘 + 2
< 𝑇 𝑚𝑖𝑛} (5.4)

Schedulable Utilization Bounds Since the main goal of the our solution is to
minimize the modifications of the resource supply parameters once they have been
defined, we rely on the schedulable utilization bounds defined in the Section 5 of
[10] to keep the application schedulable by changing the application utilization
rather than changing the resource supply utilization. Accordingly, an application
is schedulable under RM policy, if the application utilization 𝑈𝐀 is less than or
equal to the utilization bound 𝐔𝐁𝑅𝑀 (𝑛, 𝑇 𝑚𝑖𝑛) as defined in Eq. (5.5) (Eq. 16 in
[10]).
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𝐔𝐁𝑅𝑀 (𝑛, 𝑇 𝑚𝑖𝑛) = 𝑈Γ.𝑛

[(

2𝑘 + 2(1 − 𝑈Γ)
𝑘 + 2(1 − 𝑈Γ)

)
1
𝑛

− 1

]

, (5.5)

where
𝑘 = 𝑚𝑎𝑥{𝑘 ∈ ℤ|(𝑘 + 1)Π − Θ < 𝑇 𝑚𝑖𝑛}

Similarly, an application is schedulable under EDF policy, if the application
utilization 𝑈𝐀 is less than or equal to the utilization bound 𝐔𝐁𝐸𝐷𝐹 (𝑇 𝑚𝑖𝑛) as defined
in Eq. (5.6)(Eq. 13 in [10]).

𝐔𝐁𝐸𝐷𝐹 (𝑇 𝑚𝑖𝑛) =
𝑘𝑈Γ

𝑘 + 2(1 − 𝑈Γ)
, (5.6)

where
𝑘 = 𝑚𝑎𝑥{𝑘 ∈ ℤ|(𝑘 + 1)Π − Θ − 𝑘Θ

𝑘 + 2
< 𝑇 𝑚𝑖𝑛}

5.3 Proposed Solution

To schedule an elastic application in a hierarchical scheduling framework based
on the periodic resource model, we propose a two-layered adaptive scheduling
mechanism that first attempts to adapt the utilization of the tasks at the application
level and if this adaptation fails, it attempts to reallocate available spare resource
capacity at the system level. The different components of the proposed framework
along with the data flow between them are shown in Fig. 5.2. At the application
level, it consists of an independent application defined according to the elastic
task model, an elastic manager that implements the task compression algorithm of
Buttazzo et al. [3]. and a local scheduler implementing either the RM scheduling
policy or the EDF scheduling policy. At the system level, the Global Compositional
Scheduling Resource (GCSR) manager provides the necessary interface for com-
municating with the different applications and the functional support for serving
requests of new bandwidth resource allocations from the individual applications.
The functional behaviour of the GCSR manager is supported by the OS or the
hypervisor kernel. At the application level, whenever there is an overload situation
or an elastic task requests for a new period, the elastic manager will try to modify
and update the periods of the rest of the tasks to keep the application schedula-
ble using the Algorithm 1. If the resource supply is insufficient for the current
demand, the elastic manager generates a new sufficient resource supply interface
and requests the GCSR manager for updating the resource supply parameters. The
GCSR manager will accept the request and responds successfully(i.e., assign new
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resource supply parameters) if the global system schedulability is preserved with
the updated parameters. The elastic manager will then re-adjust the periods based
on the updated resource supply parameters.

5.3.1 Initial Desired Resource Supply

In the proposed framework, we first find the suitable resource supply Γ(Θ,Π)
for the application 𝐀 considering the parameters 𝜏𝑖(𝐶𝑖, 𝑇𝑖). We choose as 𝑇𝑖, the
desired periods for each task. For example, in Table 3.1, The values under the
column 𝑇 𝑑

𝑖 represent the initial desired periods of the application tasks. We assume
that such a taskset is feasible. Next, depending on the scheduling algorithm, we
find the resource supply utilization bound necessary to keep the application tasks
schedulable according to Eq. (5.1) and Eq. (5.3). While there exist fully polynomial
time solutions to find approximate bandwidth allocations for the periodic resource
model, e.g., [12], we use the approach proposed by Lee et al. [10] in this paper.
We assume that Γ(Θ,Π) is schedulable at the system level. Note that if Γ(Θ,Π) is
not schedulable at the system level, then the application will have to modify its
initial desired periods or the resource supply of the other co-running applications
will have to be modified. In our approach, we reject an application if the initial
resource supply is not schedulable.

5.3.2 Runtime Adaptation

Under worst-case conditions, the resource supply provided according to PRM can
result in a no supply interval of duration 2(Π − Θ) (see Fig. 1). Therefore, once
the application is executing, whenever a task requests for a new period 𝑇 𝑛𝑒𝑤

𝑖 , we
need to consider two different scenarios depending on the value of 𝑇 𝑛𝑒𝑤

𝑖 . If 𝑇 𝑛𝑒𝑤
𝑖is greater than the no supply duration, we can adapt the tasks utilization at the

application level without changing the resource supply parameters. If 𝑇 𝑛𝑒𝑤
𝑖 is less

than or equal to the no supply duration, we need to adapt the resource supply at
the system level.

Application level Adaptation From Eq. (5.5) and Eq. (5.6), it is easy to see that
the utilization bound to keep the application tasks schedulable remains constant
as long as 𝑇 𝑚𝑖𝑛 remains unchanged. When the requested period 𝑇 𝑛𝑒𝑤

𝑖 is greater
than or equal to 𝑇 𝑚𝑖𝑛, it implies that the resource supply parameters do not have
to be changed since the current 𝑇 𝑚𝑖𝑛 remains unchanged. As a consequence,
and based on the sustainability property of the utilization tests [13], the elastic
manager can find a schedulable period reassignment by ensuring that the modified
application utilization 𝑈 𝑛𝑒𝑤

𝐀 remains below the schedulable utilization bound as
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Figure 5.2. Data Flow Between The Adaptive Scheduling Framework Components.

shown in Eq. (5.7) or Eq. (5.8). Note that the periodic supply resource utilization
𝑈Γ remains constant under application level adaptation.

𝑈 𝑛𝑒𝑤
𝐀 ≤ 𝐔𝐁𝐸𝐷𝐹 (𝑇 𝑚𝑖𝑛) (5.7)

𝑈 𝑛𝑒𝑤
𝐀 ≤ 𝐔𝐁𝑅𝑀 (𝑛, 𝑇 𝑚𝑖𝑛) (5.8)

System Level Adaptation At runtime, if a task requests for a new period 𝑇 𝑛𝑒𝑤
𝑖that is less than 𝑇 𝑚𝑖𝑛, then it is not guaranteed that the existing resource supply Γ

can provide sufficient CPU time for the application tasks to remain schedulable.
This is because the schedulable utilization bound (for both EDF and RM scheduling
policy) is a function of the minimum period of the taskset and since we are now
reducing the minimum period, it may so happen that the 𝑇 𝑛𝑒𝑤

𝑖 will have its arrival
and deadline in the no supply interval of duration 2(Π − Θ) in the worst case (see
Fig. 1). Therefore, whenever a task makes a request of 𝑇 𝑛𝑒𝑤

𝑖 less than 𝑇 𝑚𝑖𝑛, the
elastic manager will generate new resource supply parameters and request the
GCSR manager to update the resource supply according to the new parameters so
that the application remains schedulable. If the GCSR manager rejects the request,
then the elastic manager will not be able to satisfy the application request and it
is then up to the application to decide how it needs to proceed. If the resource
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supply parameters are updated, the next request for a period change will be handled
based on the updated resource supply parameters. While it is possible to apply
the elastic task compression algorithm at the system level to modify the resource
supply utilization to accommodate the requests from the different applications, it
requires modifications of the resource supply of the co-running applications which
in turn can trigger application level modifications. To avoid this, we require some
spare capacity to be made available at the system level so that it can be distributed
among the different applications whenever required. Although we do not propose
any particular method in this paper for the distribution of the spare capacity, the
methods in [14, 15] are particularly well suited for the spare capacity distribution.

PRM Elastic Scheduler We now discuss how the elastic manager and the GCSR
manager work together to adapt the application as well as system resources to
maintain schedulability. The pseudo-code is presented in Algorithm 2. The func-
tional behaviour is split between the elastic manager and the GCSR manager. The
Elastic manager takes as input the request for 𝑇 𝑛𝑒𝑤

𝑖 and if 𝑇 𝑛𝑒𝑤
𝑖 is greater than

or equal to the 𝑇 𝑚𝑖𝑛 of the application, it uses the elastic compression algorithm
to find a feasible period reassignment. Before it calls the task compression al-
gorithm, it modifies the period parameter of the task from 𝑇 𝑑

𝑖 to 𝑇 𝑛𝑒𝑤
𝑖 . The task

compression algorithm then takes as input the updated taskset parameters and the
current resource supply utilization 𝑈Γ to adapt the periods of the tasks to keep the
application schedulable. If 𝑇 𝑛𝑒𝑤

𝑖 is less than 𝑇 𝑚𝑖𝑛 of the application, it sets the
𝑇 𝑚𝑖𝑛 value equal to 𝑇 𝑛𝑒𝑤

𝑖 . It then generates the new resource supply parameters via
the GET_RESOURCE_INTERFACE function. This function takes as input the updated
taskset parameters and the value 𝑘 satisfying Eq. (5.2) or Eq. (5.4). It then finds
the resource supply utilization bound according to Eq. (5.5) or Eq. (5.6). It uses
this value to find a solution according to the approach given in [10]. The Elastic
manager requests the GCSR manager to modify its resource supply parameters via
the REQUEST_RESOURCE_UPDATE function. The GCSR manager tries to allocate
resources from the spare capacity while maintaining system schedulability. It
returns success if the requested resource supply parameters can be accommodated
or returns failure along with the maximum resource supply utilization that it can
provide. In case of failure, it is up to the application to decide on how to handle
this failure.

5.4 Evaluation

We evaluate the performance of the proposed framework in the context of EDF
scheduling. To demonstrate the advantages of the proposed method, we generated
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Algorithm 2 PRM Elastic Scheduler
function GET_PERIOD_INTERFACE(𝐀, 𝑇 𝑚𝑖𝑛,k)

𝑈 𝑛𝑒𝑤
Γ ← FIND_UTILIZATION_BOUND(𝑈𝐴)

Γ(Θ𝑛𝑒𝑤,Π𝑛𝑒𝑤) ← FIND_SOLUTION(𝑘,𝐀, 𝑈 𝑛𝑒𝑤
Γ )

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← REQUEST_RESOURCE_UPDATE(Γ(Θ𝑛𝑒𝑤,Π𝑛𝑒𝑤))
if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 == 𝑡𝑟𝑢𝑒 then

return Γ(Θ𝑛𝑒𝑤,Π𝑛𝑒𝑤), 𝑈 𝑛𝑒𝑤
Γ

else
return Failure

end if
end function
function ELASTIC_MANAGER(𝑇 𝑛𝑒𝑤

𝑖 )
𝑇 𝑑
𝑖 ← 𝑇 𝑛𝑒𝑤

𝑖
if 𝑇 𝑛𝑒𝑤

𝑖 ≥ 𝑇 𝑚𝑖𝑛 then
𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← TASK_COMPRESS(𝐀, 𝑈Γ)
if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ! = 𝑡𝑟𝑢𝑒 then

ℎ𝑎𝑛𝑑𝑙𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒()
end if

else
𝑇 𝑚𝑖𝑛 ← 𝑇 𝑛𝑒𝑤

𝑖
𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 ← GET_PERIOD_INTERFACE(𝐀, 𝑇 𝑚𝑖𝑛, 𝑘)
if 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒! = Failure then

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← TASK_COMPRESS(𝐀, 𝑈Γ)
if 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ! = 𝑡𝑟𝑢𝑒 then

ℎ𝑎𝑛𝑑𝑙𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒()
end if

else
ℎ𝑎𝑛𝑑𝑙𝑒𝐹𝑎𝑖𝑙𝑢𝑟𝑒()

end if
end if
return

end function
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900 random tasksets with each taskset consisting of 10, 20 or 30 tasks. For each
taskset, we set the initial desired utilization equal to 0.25, 0.5, and 0.75. The
utilization for each task was then was derived using the algorithm proposed by
Griffin et al. [16]. The initial desired periods were chosen at random from a normal
distribution in the range [10,100]. The WCET values were set as 𝐶𝑖 = 𝑈𝑖 ∗ 𝑇𝑖.
The minimum and maximum periods for each of the tasks were assigned as a
function of the initial desired period, i.e., to fix the minimum period, we subtracted
a random percentage in the range [10-50] from the desired period. Similarly, for
the maximum period, we added a random percentage in the range [10-50] to the
desired period. We assigned random integer values from a normal distribution n
the range [0-10] as the elastic coefficients of the tasks. For each taskset, we then
derived a periodic resource interface for the initial desired periods according to
the algorithm in [10].

We set up the experiments according to the different configurations of the
number of tasks 𝑁 and the total desired utilization 𝑈 , i.e., each configuration was
defined as a pair(N,U). For each configuration, 100 random tasksets were generated.
For each configuration and a random taskset, we requested a change in the desired
period 100 times. For each new period request, we assigned the new period values
chosen from a uniform distribution within their defined period ranges. For each
configuration, we counted the number of times the elastic manager was able to
modify the utilization such that the application remains schedulable. If the elastic
manager failed to find a feasible solution, it would adapt the interface bandwidth1.
The task requesting for a new period was chosen at random for each of the new
period request.

Fig. 5.3 shows the distribution of requests between the elastic manager and
the GCSR manager for 300 different configurations with N equal to 10 and the
total utilization set to 0.25, 0.5, and 0.75. We can observe that the elastic manager
was able to successfully handle a significantly large percentage of the new period
requests locally. For lower utilization values, the percentage of requests handled
locally was less than the percentage for the higher utilization. Fig. 5.4 shows the
distribution of the requests between the elastic manager and the GCSR manager
for 300 configurations with 𝑁 equal to 20 and the total utilization set to 0.25,
0.5, and 0.75. Similar to the previous observations, the elastic manager was
able to successfully handle a large percentage of the requests locally, while for
lower utilization values, the percentage was less than the percentage for higher
utilization. For the remaining 300 configurations, we set 𝑁 equal to 30 and the total
utilization was set to 0.25, 0.5, and 0.75. In this case, the elastic manager was able

1Note that for this evaluation we did not check for system schedulability since a failure of system
schedulability test could only mean that the application’s resource demands were not feasible.
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to successfully handle a higher percentage of requests at lower utilization values
when compared to higher utilization tasksets. This is shown in Fig. 5.5. Here,
even when compared to the lower number of tasks with the same total utilization,
there are more requests for system-level bandwidth adaptation.

In another experiment, we modified the range of the minimum and maximum
periods of the taskset from the initial [10,50] percent values to [10,100] percent.
When the difference between the initial desired period and the minimum and
maximum periods is increased, fewer requests were handled at the application
level compared to the system level. As shown in Fig. 5.6, for the configuration of
10 tasks and utilization set to 0.25, more than 70% of the requests are for bandwidth
adaptation when the difference between the minimum and maximum periods was
changed to [10,100] percent from [10-50] percent. Another significant observation
is that for certain configurations and tasksets, all of the 100 new period requests
could either be handled locally by the elastic manager or handled only at the system
level by the GCSR manager. This can be observed in Fig. 5.7. This indicates that
the approach based on setting the initial resource supply according to the initial
desired periods can have a considerable impact on the number of requests that
need bandwidth adaptations.
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Figure 5.3. Percentage of requests handled by Elastic and GCSR manager for taskset size

10.
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5.5 Related Work

The concept of elastic tasks was introduced by Buttazzo et al. [3] to model applica-
tions whose computational demands can occasionally exceed the available capacity
by allowing the application to modify the demand by changing the frequency of its
jobs through an elastic coefficient. This was extended to address resource sharing
within the elastic task model in [11]. Chantem et al. [17, 18] reformulated the
problem as a quadratic optimization problem and showed that the original elastic
tasks compression algorithm was indeed a solution to solving a quadratic problem.
Tian et al. [19] extended the modified problem to include a “Quality-of-Control”
metric as a part of the objective function of the quadratic optimization problem.
More recently, Orr et al. [20, 21] provided algorithms to schedule sequential elastic
tasks on multiprocessor systems and further extended the concept of the elastic task
to federated DAG-based parallel task systems in [22, 23]. Beccari et al. [24, 25]
provided alternative algorithms to schedule similar applications by expressing the
task period ranges in a linear programming formulation.

Hierarchical scheduling of applications was encapsulated in a compositional
real-time scheduling framework by Lee et al. [10]. In this framework, the compu-
tational demand of an application was abstracted with a single demand interface
as a pair of capacity and period and the resource supply server was abstracted as a
periodic resource model where each server was guaranteed a reserved capacity
Θ every Π time units. Easwaran et al. [26] extended the periodic resource model
to include the deadline parameter, where each server was guaranteed a reserved
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30.

capacity Θ within 𝐷 time units, in every time interval Π. Dewan et al. [27, 12]
provided algorithms to find an approximate allocation of bandwidth for a set of
periodic and sporadic tasks under the periodic resource model. Khalilzad et al. [6]
proposed an adaptive hierarchical scheduling model to accommodate the adaptive
behaviour of the periodic and sporadic tasks by changing the bandwidth allocation.
In contrast, this paper assumes that a bandwidth allocated for a server under the
periodic resource model remains constant and that the workload within the server
can be adapted according to the elastic task model. However, if the elastic assign-
ment fails, a request for a new bandwidth allocation will be made. We note that
the proposed solution does not take into account possible bandwidth reclamation
or mixed-criticality-based approaches to assign new bandwidths if no schedulable
allocation can be made. Instead, we leave it to the individual application to handle
such failures.
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5.6 Conclusion

Many real-time applications designed to accommodate their behaviour at run-
time depend upon user configuration or the physical environment in which they
operate. Further, for open real-time systems, the applications can be developed
independently and can be run on the same hardware. To accommodate such
adaptive behaviour and minimize the impact of an individual application’s vari-
ability in its timing and resource demands, we proposed a two-level scheduling
framework based on the periodic resource model and the elastic task model. We
provided a mechanism based on the utilization tests to enable the execution of
the elastic applications in a compositional real-time system. Further, by com-
bining the application-level adaptation along with the system-level bandwidth
modifications, we have shown that a large percentage of task modifications can
be handled by the framework at the application level. If the local adaptation fails,
the system-level reallocation provides an additional mechanism to support the
scheduling of elastic applications. However, for some cases, if both the levels
fail to find a schedulable modification, it is up to the application to handle such
failures. Overall, our combined approach improves the number of application-level
variations that can be handled without affecting the property of independence of
other co-running applications of the same processor. In future work, we intend
to investigate techniques related to mixed-criticality and compositional real-time
systems to reallocate resources at the system level.
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Figure 5.7. Requests handled by Elastic and GCSR Manager for 100 tasksets of a single
configuration (20,0.25).
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Abstract
Scheduling of real-time applications modelled according to the periodic

and the sporadic task model under hierarchical and compositional real-time
systems has been widely studied to provide temporal isolation among in-
dependent applications running on shared resources. However, for some
real-time applications which are amenable to variation in their timing be-
haviour, using these tasks models results in pessimistic solutions. The elastic
task model addresses this pessimism by allowing the timing requirements of
the application’s tasks to be specified as a range of values instead of a single
value. While the scheduling of elastic applications on dedicated resources
has received considerable attention, there is limited work on scheduling of
such applications in hierarchical and compositional settings.

In this paper, we evaluate different earliest deadline first scheduling
algorithms to schedule elastic applications in a minimum parallelism supply
form reservation on a multiprocessor system. Our evaluation indicates that
the proposed approach provides performance comparable to the current state-
of-art algorithms for scheduling elastic applications on dedicated processors
in terms of schedulability.

6.1 Introduction

The elastic task model enables convenient modelling of real-time applications
that can tolerate some amount of variation in their timing behaviour (changes
in interarrival times or changes in execution times) while still maintaining their
functional correctness. In uniprocessor systems and multi-processor systems where
the resources are fully dedicated to an elastic application, the variation can be
managed online by modifying the utilization of the application’s tasks to ensure
schedulability. Scheduling multiple elastic applications on a shared resource,
however, requires the use of reservation-based mechanisms to minimize the impact
of such variations on the co-scheduled applications. While different solutions
have been proposed for scheduling applications with tasks specified according
to the periodic or the sporadic task model under reservation-based mechanisms,
there is limited work related to scheduling of elastic applications under reservation
schemes. In this context, we propose a scheduling framework for executing elastic
applications under the minimum-parallelism periodic resource supply model (MPS)
on multi-processor systems. While the elastic task model allows defining the task
parameters to capture the variable timing requirements of the application, the
minimum-parallelism periodic resource supply model [1, 2] provides a relatively
simpler mechanism to reserve the resource supply on a multi-processor system.
Moreover, under certain period assignment constraints, the MPS model dominates
other comparable state-of-art techniques [2].
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Concretely, in this paper, we address the following questions:
Q1 Given an application with elastic tasks, what is a feasible bandwidth required

to schedule the applications in an MPS reservation on a multiprocessor system?
Q2 Given a fixed bandwidth MPS reservation, what mechanism can the elastic

application tasks adopt to remain schedulable?
Q3 Given an elastic application, can a schedulable reservation be found if the

application requests for a modified bandwidth reservation?
Q4 What is the trade-off between the proposed approach and the current state-of-art

approaches?

6.2 Proposed System Model

We consider the scheduling of a real-time application specified according to the
elastic task model with each task having an implicit deadline(See Section. 6.2.1).
At the system level, we assume that the CPU resources are made available to
each application according to the multi-processor Minimum Parallelism Supply
Model (MPS) [2, 1] (see Section 6.2.2). We assume that each application provides
its own local scheduling mechanism, based on the partitioned dynamic-priority
scheduling implementing the Earliest Deadline First (EDF) policy. The dedicated
full processors do not need a system-level scheduler but rather use the application
provided scheduler. The partial processor can be managed by any scheduler which
can ensure that the partial processor provides supply according to the periodic
resource model [3].

6.2.1 The Basic Elastic Task Model

We define an elastic application 𝐀 as a set of 𝑛 tasks where each task is specified
as 𝜏𝑖 = {𝐶𝑖, 𝑇 𝑚𝑖𝑛

𝑖 , 𝑇 𝑑
𝑖 , 𝑇

𝑚𝑎𝑥
𝑖 , 𝐸𝑖}. Here, 𝐶𝑖 is the Worst-Case Execution Time

(WCET) of the task while 𝑇 𝑚𝑖𝑛
𝑖 and 𝑇 𝑚𝑎𝑥

𝑖 specify the minimum and the maximum
interarrival time between consecutive jobs of 𝜏𝑖. 𝑇 𝑑

𝑖 represents the desired period
of the task 𝜏𝑖. The elastic co-efficient 𝐸𝑖 determines the flexibility of the task
𝜏𝑖 to change in its period [4]. For instance, if 𝐸𝑖 is defined to be in the range
[0, 1], 𝐸𝑖 = 0 ensures that the task’s desired period cannot be modified, implying
that 𝑇 𝑚𝑖𝑛

𝑖 = 𝑇 𝑑
𝑖 = 𝑇 𝑚𝑎𝑥

𝑖 . Similarly, 𝐸𝑖 = 1 indicates that the task’s period can
be modified to take up values up to its maximum period. Further, the elastic
coefficient acts as a weighting factor, determining the extent to which its utilization
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Task ID WCET 𝑇 𝑚𝑖𝑛
𝑖 𝑇 𝑑

𝑖 𝑇 𝑚𝑎𝑥
𝑖 𝐸𝑖

𝜏1 4 40 120 240 1
𝜏2 8 40 80 360 0.75
𝜏3 12 240 240 480 0.5
𝜏4 12 200 240 600 0.25
𝜏5 4 40 40 40 0

Table 6.1. An Elastic Task Set

can be reduced in relation to other tasks. We use 𝑇𝑖 (without any postscript) to
indicate the current inter-arrival time of 𝜏𝑖. An example of an elastic taskset is
shown in Table 6.1. Here, the period of the task 𝜏1 can be extended up to its
maximum period, while the task 𝜏5 can only execute with its desired period.

The utilization of a task 𝜏𝑖 is defined as 𝑈𝑖 =
𝐶𝑖
𝑇𝑖

. The minimum and maximum
utilization of each task is represented by 𝑈𝑚𝑖𝑛

𝑖 = 𝐶𝑖
𝑇 𝑚𝑎𝑥
𝑖

and 𝑈𝑚𝑎𝑥
𝑖 = 𝐶𝑖

𝑇 𝑚𝑖𝑛
𝑖

, respec-
tively. The desired utilization is represented by 𝑈𝑑

𝑖 = 𝐶𝑖
𝑇 𝑑
𝑖

. The desired application
utilization is given by the sum of the desired utilization of the individual tasks. i.e.,
𝑈𝑑 =

∑𝑛
𝑖=1 𝑈

𝑑
𝑖 . Similarly, the minimum and maximum application utilization is

given by 𝑈𝑚𝑖𝑛 =
∑𝑛

𝑖=1 𝑈
𝑚𝑖𝑛
𝑖 and 𝑈𝑚𝑎𝑥 =

∑𝑛
𝑖=1 𝑈

𝑚𝑎𝑥
𝑖 . The relative deadline of each

job of an elastic task is equal to its current period at runtime. If a task requests for a
change in its current period, its desired utilization 𝑈𝑑

𝑖 is updated and a schedulable
utilization for rest of the tasks is calculated. An elastic application is said to be
schedulable if 𝑈𝑑 ≤ 𝑈 𝑢𝑏, where 𝑈 𝑢𝑏 is the utilization upper-bound for a given
scheduling algorithm. It is assumed that the deadline is elastic-implicit. Note that
when the utilization of a task is changed to accommodate increased utilization of
another task, the reduced utilization is used to check for schedulability instead of
the initial desired period.

6.2.2 Minimum-Parallelism Resource Supply Model

The resource supply provided to the application is based on the minimum par-
allelism resource supply model [1, 2]. Here the resource supply is provided by
reserving 𝑚 dedicated processors for an application and at most one periodic re-
source model based partial processor [3] for the exclusive use of the application.
Here, the partial processor is defined as Γ(Θ,Π), where Θ is the periodic resource
allocation time and Π is the resource period. Essentially, the periodic resource Γ
provides an application with Θ time units of CPU time every Π time units. The
utilization of the partial resource supply is defined as 𝑈Γ = Θ

Π .
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Figure 6.1. Minimum Parallelism Resource Supply Model.

Task ID 𝑈𝑑
𝑖

𝜏1 0.55
𝜏2 0.50
𝜏3 0.50
𝜏4 0.45
𝜏5 0.25
𝜏6 0.15

Table 6.2. taskset with desired utilization.

Fig. 6.1 shows the resource supply provided according to the MPS model
with 3 processors. Here, processor 1 and processor 2 are fully dedicated to the
application, while processor 3 is available partially and modelled according to
the periodic resource model. In the worst case, i.e., when the resource budget is
exhausted at the beginning of its period and the next instant it is available close to
the end of the next period, the no supply interval of the partial processor is equal
to 2(Π − Θ) [3].

Generating the resource supply reservation parameters As the MPS model
requires reserving m full processors and one partial processor, we need to identify
the number of dedicated processors along with the resource supply parameters
of the partial processor necessary to schedule the application. We identify these
values based on the initial desired utilization. As we consider partitioned EDF
scheduling, we apply the reasonable allocation decreasing (RAD) partitioning
heuristic specified in [5]. For example, consider the taskset with its desired utiliza-
tion in Table 6.2. The tasks 𝜏1 and 𝜏4 are assigned to the same processor since their
utilization sums up to one. Similarly 𝜏2 and 𝜏3 are assigned to another processor.
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As 𝜏5 and 𝜏6 have their utilization much less than the utilization limit for a fully
dedicated processor under EDF, they are assigned a partial processor. We apply
the method described in [3] to identify the capacity and the period of the partial
processor to schedule 𝜏5 and 𝜏6.

Schedulability Bounds For the dedicated processors, we assume the unipro-
cessor utilization bound of one for partitioned EDF. For the partial processor,
we use the utilization bound defined according to the periodic resource model.
Particularly, the application tasks assigned to the partial processor with utilization
𝑈𝐀 are schedulable under EDF scheduling policy if the partial processor resource
supply utilization satisfies Eq. (6.1) (Eq. 21 in [3]).

𝑈Γ,𝐸𝐷𝐹 (𝑘) =
(𝑘 + 2).𝑈𝐀
𝑘 + 2(𝑈𝐀)

, (6.1)

where,
𝑘 = max

{

𝑘 ∈ ℤ
|

|

|

|

(𝑘 + 1)Π − Θ − 𝑘Θ
𝑘 + 2

< 𝑇 𝑚𝑖𝑛
}

(6.2)

and 𝑇 𝑚𝑖𝑛 is the smallest period among the tasks assigned to the partial processor.

6.3 Proposed Solution

As the minimum parallelism resource supply model allows at most one partial
processor, the remaining resources are provided by dedicated processors. Therefore,
we first consider scheduling of elastic applications on dedicated multiprocessors.
In this section, we summarize the current state-of-art solution to the scheduling
problem based on the partitioned heuristics proposed by Orr et al. [6]. We then
extend this solution to include the partial processor.

6.3.1 Scheduling Elastic Applications on Dedicated Multi-Processors

The schedulability of elastic applications on dedicated multi-processors was evalu-
ated by Orr et al. [6] using both global as well as partitioned scheduling approaches.
Their work highlighted the relatively better schedulability performance of the par-
titioned approach when compared to global scheduling for elastic applications.
We summarize their approach below and refer to it as the global re-partitioning
approach in the rest of the paper.
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The Global Re-Partitioning Approach This approach involves iteratively com-
pressing the utilization and re-partitioning the taskset until a schedulable partition
is found. The algorithm iterates over the values in the range [0,Φ], where Φ is
calculated according to (6.4), to find the smallest value of 𝜆 such that the utilization
assigned to each task according to (6.3) can result in a schedulable partition. Dur-
ing each iteration, it assigns a value to 𝜆 and calculates the utilization to be assigned
to each task. For this set of utilization values, it then applies a predetermined
partitioning heuristic such as the reasonable allocation decreasing(RAD)

[5], where the tasks are ordered according to monotonically decreasing utilization
values and each task is then assigned to the processor on which it fits. The task to
processor assignment can be based on

1. First Fit: Assign the task to the first processor on which it fits. i.e., the task
meets its schedulability conditions.

2. Best Fit: Assign the task to the processor with minimum remaining capacity
after its allocation.

3. Worst Fit: Assign the task to the processor with maximum remaining capac-
ity after its allocation.

If a task remains unassigned, the value of 𝜆 is incremented by a granularity
constant 𝜖 and the process is repeated until either all tasks are assigned to processors,
resulting in a successful allocation, or the value of 𝜆 exceeds Φ, resulting in failure.

𝑈𝑖 = max(𝑈𝑑
𝑖 − 𝜆𝐸𝑖, 𝑈

𝑚𝑖𝑛
𝑖 ) (6.3)

Φ = max

(

𝑈𝑑
𝑖 − 𝑈𝑚𝑖𝑛

𝑖

𝐸𝑖

)

(6.4)

An Example Consider an elastic taskset with values given in Table.6.3 that
needs to be scheduled on a 2 core processor. According to the first fit heuristic
and considering the desired utilization values, the tasks 𝜏1 and 𝜏2 are assigned to
core 1 while 𝜏3 and 𝜏4 are assigned to core 2. At runtime, suppose that the task 𝜏1
requests for a new utilization equal to 0.65. The algorithm tries to find a suitable
value for 𝜆 such that a schedulable partition is found. Observing the utilization
values in this example, one can notice that the new utilization request of the task 𝜏1
could have been easily accommodated by changing the utilization of task 𝜏2 from
its desired value to its minimum utilization value without the re-partitioning step.
Based on this observation, we propose a new algorithm that applies the utilization
modification algorithm on a per-core basis and only re-partitions the taskset if the
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Task ID 𝑈𝑚𝑖𝑛
𝑖 𝑈𝑑

𝑖 𝑈𝑚𝑎𝑥
𝑖 𝐸𝑖

𝜏1 0.25 0.55 0.75 1
𝜏2 0.25 0.45 0.65 1
𝜏3 0.25 0.50 0.75 1
𝜏4 0.25 0.50 0.75 1

Table 6.3. An Elastic Task Set

Task ID 𝑈𝑚𝑖𝑛
𝑖 𝑈𝑑

𝑖 𝑈𝑚𝑎𝑥
𝑖 𝐸𝑖

𝜏1 0.25 0.55 0.75 1
𝜏2 0.35 0.45 0.65 1
𝜏3 0.15 0.50 0.75 1
𝜏4 0.15 0.50 0.75 1

Table 6.4. An Elastic Task Set with Unschedulable Demand

per-core approach fails to successfully accommodate the requests for increased
utilization values.

Utilization Modification on a Single Core While the re-partitioning approach
is relatively straightforward to implement, one disadvantage of this approach is
that if a taskset is not schedulable, the global re-partitioning can cause multiple
task migrations resulting in additional book-keeping overhead. Further, if the tem-
poral isolation strategies such as cache partitioning are part of an overall solution,
especially those based on task-based cache allocation, then task migrations may
require re-partitioning of the caches adding to the overhead. One way to minimize
such overheads is to limit the utilization modification to tasks running on the same
processor or the partial processor as the task requesting the increased utilization.

An Example While the request for increased utilization of the task 𝜏1 in the
previous example could be successfully managed following the per-core utilization
approach, this approach can fail to find a schedulable solution for other requests and
tasksets. To illustrate this, consider the elastic taskset as given in Table. 6.4, which
is similar to the previous example but with modified minimum utilization values.
Based on the desired utilization values, the tasks 𝜏1 and 𝜏2 are assigned to core 1
while 𝜏3 and 𝜏4 are assigned to core 2. At runtime, suppose that the task 𝜏1 requests
for a new utilization equal to 0.75. Applying the per-core approach would require
the utilization of the task 𝜏2 to be reduced to 0.25. Since the minimum utilization of
task 𝜏2 is greater than the required value, this results in an unschedulable condition.
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If re-partitioning was applied, however, the request could be successfully handled
by assigning 𝜏1 and 𝜏3 to the same core and reducing the utilization 𝜏3 to 0.25.
Similarly, 𝜏2 and 𝜏4 could be assigned to the same core to ensure schedulability.

Based on these observations, we describe next a combined approach that
exploits the advantages offered by the per-core approach while improving the
range of schedulable elastic tasksets through limited re-partitioning.

The Combined Approach Although the original re-partitioning approach finds
schedulable solutions for most of the evaluated scenarios(See Section. 6.4), the
associated overheads can be minimised by first applying the utilization modification
algorithm to the tasks running on the same processor as the task requesting for
increased utilization to find a schedulable utilization on that processor. Since the
complexity of the utilization modification algorithm is a function of the number
of tasks and the number of processors, by reducing the number of tasks whose
utilization should be adjusted, the efficiency of the algorithm can be improved.
Indeed, if a schedulable utilization is not found, then re-partitioning considering
all the cores and the complete taskset cannot be avoided and as such, the overheads
related to task migration (and if applicable, cache partitioning) remain the same
as in the original approach. The general steps for the combined approach are as
follows:

1. Order the taskset either in an (i) arbitrary manner, or (ii) monotonically
increasing utilization, or (iii) monotonically decreasing utilization.

2. Order the processors in some arbitrary manner.
3. Allocate tasks to processors according to a Reasonable Allocation

scheme.
4. When a task makes a request for increased utilization, apply the iterative

utilization modification algorithm only to tasks on the same core.
5. If such a request fails, apply the iterative utilization modification algorithm

including re-partitioning by considering all the cores.
The combined approach is able to find schedulable solutions similar to the orig-

inal re-partitioning approach but with improved efficiency since the re-partitioning
step is applied only if the per-core utilization modifications fail. In some of the eval-
uated scenarios, the results indicate per-core utilization modifications are sufficient
to keep the application schedulable while completely avoiding the re-partition-
ing step. In limited cases where the per-core utilization fails, the re-partitioning
approach successfully finds a schedulable partition.
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6.3.2 Extension to Minimum Parallelism Resource Supply Model

The approaches discussed in the previous section considering dedicated processors
can be extended to the minimum parallelism resource supply reservation model
with some minor modifications. One of the key distinguishing characteristics
between the MPS reservation model and the fully dedicated processors is the
presence of the partial processor. Since the partial processor is only available
periodically, under worst-case conditions, there can be a no supply interval equal
to 2(Π − Θ) ( See Fig. 6.1). Any task with a period less than this no supply
interval cannot be allocated to the partial processor. As a consequence, the re-
partitioning step should not only consider the utilization but also the period of the
tasks. Moreover, in the case where both per-core utilization modification, as well
as re-partitioning, fail due to the period constraints, depending on the availability
of resources on the core executing the partial processor, a re-allocation of the
bandwidth on the partial processor can be considered. The general steps of the
proposed approach are as follows:

1. Order the taskset (i) arbitrary manner (ii) monotonically increasing desired
utilization or (iii) monotonically decreasing desired utilization.

2. Order the processors in some arbitrary manner.
3. Allocate tasks to processors according to a Reasonable Allocation

scheme.
4. if any task remains unallocated, generate resource supply parameters for

the partial processor according to the initial desired utilization values of the
unallocated tasks.

5. When a task makes a request for increased utilization, apply the iterative
utilization modification algorithm only to tasks on the same core (or partial
processor as applicable).

6. if such a request fails, apply the iterative utilization modification algorithm
by including re-partitioning considering all the dedicated cores. Include
partial processor only if the failing request belongs to the partial processor.

7. During re-partitioning, only allocate tasks whose periods are greater than
the worst-case no-supply duration on the partial processor while ensuring
that the total utilization of the task assigned to the partial processor remains
below the partial processor utilization according to Eq.(6.1).

8. If this request fails, modify the bandwidth of the partial processor if resources
are available and repeat steps 3 and 4.
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6.4 Evaluation

We evaluated the proposed approach for the case of fully dedicated processors
by considering randomly generated tasksets with a varying number of tasks and
utilization values along with a different number of processors and partitioning
heuristics. Here we present the results of the 16 such configurations as detailed
in Table 6.5. For each configuration, we measured the number of successful
requests along with the computation time (based on the Query Performance Counter
provided by the Windows OS) for a prototype implementation of the proposed
algorithms.

Taskset Generation The desired utilization of each task of a taskset was gener-
ated using the algorithm proposed by Griffin et al. [7]. The minimum utilization
was generated by subtracting a randomly generated percentage (taken from a uni-
form distribution) from the desired utilization. Similarly, the maximum utilization
was generated by adding a randomly generated percentage to the desired utilization
while ensuring that the maximum utilization for each task was under one. Each
request for increased utilization was generated by selecting a random task and
a uniformly distributed random utilization value from within the task’s desired
and maximum utilization. The elastic co-efficient was assigned to each task by
randomly generating real values taken from a uniform distribution between [1-10].

Configurations To compare the performance of the proposed approaches with a
state-of-art method, we evaluated different configurations by varying the number of
processors, and tasks along with different percentage limits on the utilization values
to define the maximum and minimum utilization of each task. For the desired
utilization, the maximum utilization of each task was set to be not greater than 0.5.
Further, the tasks were ordered according to monotonically decreasing utilization
values. The first fit approach was used as the task to processor assignment strategy.
Table 6.5 shows the different configurations where the column maxmin indicates
the maximum and minimum values used to define the utilization values. For
example, the values (1, 0.5) indicate that the maximum utilization that a task can
have is in the interval [𝑈𝑑 , 𝑈𝑑 + (1 ⋅ 𝑈𝑑)], while the minimum utilization a task
can have is in the interval [𝑈𝑑 − (0.5 ⋅ 𝑈𝑑), 𝑈𝑑]. The values under the column
“configuration” refer to the respective (row) configurations settings and are used as
identifiers on the x-axis in the associated graphs.
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Configuration Maxmin No.of tasks No.of Processors
1 1, 0.5 100 2
2 1, 0.5 100 4
3 1, 0.5 100 8
4 1, 0.5 100 16
5 1, 0.5 200 2
6 1, 0.5 200 4
7 1, 0.5 200 8
8 1, 0.5 200 16
9 0.5, 0.5 100 2

10 0.5, 0.5 100 4
11 0.5, 0.5 100 8
12 0.5, 0.5 100 16
13 0.5, 0.5 200 2
14 0.5, 0.5 200 4
15 0.5, 0.5 200 8
16 0.5, 0.5 200 16

Table 6.5. Different Configuration Settings.

6.4.1 Results

We evaluated the different approaches for schedulability along with the computation
times under different configuration requirements. For each configuration, we
generated ten different tasksets and for each taskset, we simulated 1000 requests
for utilization modifications. For each utilization request, we assigned the new
utilization values chosen from a uniform distribution between the desired utilization
and the maximum utilization. Moreover, each task requesting increased utilization
was chosen randomly.

Schedulability The schedulability of the different configurations for the three
methods is shown in Fig. 6.2. Here, GP refers to the global re- partitioning
approach of ORR et al., while PCM refers to the per-core utilization modification
approach and CA refers to the combined approach of per-core modifications and
re-partitioning. The results show that the combined approach has a 100 percent
success value while the per-core modifications have a success value of 95 percent in
the worst-case indicating that in most cases, the per-core modification is sufficient.
In case of failure, the limited re-partitioning associated with the combined approach
can find a schedulable solution. The variation in successful requests for certain
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configurations is mostly due to the randomness in the generated tasksets and the
tasks requesting for the modified utilization.

For configurations with a reduced number of tasks (Table 6.6), the schedulabil-
ity performance of the per-core approach was around 93 percent in the worst-case
scenario, which was relatively worse than compared to tasksets with a larger
number of tasks while the other two approaches had 100 percent success.

Configuration Maxmin No.of tasks No.of Processors
1 1, 0.5 20 2
2 1, 0.5 20 4
3 1, 0.5 20 8
4 0.5, 0.5 20 2
5 0.5, 0.5 20 4
6 0.5, 0.5 20 8

Table 6.6. Configuration with a smaller number of tasks.

Computation time For each configuration, we measured the computation time
required to find a schedulable solution and to report a failure if no solution is found
through a prototype implementation of the proposed approaches on a Windows
system. Fig. 6.3 shows the average computation time per request for each of the
different configurations. The average was calculated by measuring 10000 requests.
The results indicate that the per-core and the combined approach perform relatively
better compared to the global re-partitioning approach. In certain scenarios, the
average computation time of the combined approach is 6 times better than the
global re-partitioning approach. This improvement is mostly due to the fact that
most requests are managed within the core and that re-partitioning is done only
if necessary, unlike the global re-partitioning approach where every new request
results in re-partitioning.

Fig. 6.4 shows the worst-case computation times taken by the different ap-
proaches. The results indicate that for most configurations, the proposed ap-
proaches perform better than the global partitioning approach. In certain cases,
however, the worst-case performance of the combined approach is similar (or
worse in limited scenarios) to the global re-partitioning approach.

For configurations with a reduced number of tasks (Table 6.6), the computation
performance of all the approaches was better compared to the configurations with
a larger number of tasksets. Comparing the performance of different approaches
for the same number of tasks (See Fig. 6.6), the average value of the combined
approach was up to two times better than the global partitioning approach. The
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Figure 6.2. Schedulability Performance of the Different Approaches.

worst-case performance of the combined approach (See Fig. 6.7) was worse than
the global approach for most of the evaluated configurations.
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Figure 6.3. Average Computation Times of the Different Approaches.
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Figure 6.4. Worst Case Computation Times of the Different Approaches.
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Figure 6.5. Schedulability Performance of Smaller Tasksets.
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Figure 6.6. Average Computation Times for Smaller Tasksets.
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Figure 6.7. Worst Case Computation Times for Smaller Tasksets.

6.5 Related Work

Hierarchical scheduling of periodic and sporadic real-time applications was en-
capsulated in a compositional real-time scheduling framework by Lee et al. [3].
In this framework, the computational demand of an application was abstracted
with a single demand interface as a pair of capacity and period and the resource
supply server was abstracted as a periodic resource model where each server was
guaranteed a reserved capacity Θ every Π time units. Easwaran et al. [8] extended
the periodic resource model to include the deadline parameter, where each server
was guaranteed a reserved capacity Θ within 𝐷 time units, in every time interval
Π. Dewan et al. [9, 10] provided algorithms to find an approximate allocation of
bandwidth for a set of periodic and sporadic tasks under the periodic resource
model. The periodic resource model was further extended for the case of mul-
tiprocessors by Shin et al. [11] where the periodic resource supply model was
augmented with a parameter indicating the maximum concurrency with which the
resource supply is provided. The tasks assigned to this resource supply were then
scheduled using a global scheduler. Bini et al. [12, 13] provide a more expressive
and general model for specifying multiprocessor resource supply in the form of
the parallel supply function. Lee et al.[14] build upon the multiprocessor resource
supply model and provide a cache-aware compositional analysis for the minimum
parallelism resource supply form for the global EDF scheduling policy.
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The concept of elastic tasks was introduced by Buttazzo et al. [15] to model
applications whose computational demands can occasionally exceed the available
capacity by allowing the application to modify the demand by changing the fre-
quency of its jobs through an elastic coefficient. This was extended to address
resource sharing within the elastic task model in [4]. Guangming [16] provided an
earlier time for accelerating and adding tasks for the elastic scheduling approach.
Chantem et al. [17, 18] reformulated the problem as a quadratic optimization prob-
lem and showed that the original elastic tasks compression algorithm was indeed
a solution to solving a quadratic problem. Tian et al. [19] extended the modified
problem to include a “Quality-of-Control” metric as a part of the objective function
of the quadratic optimization problem. More recently, Orr et al. [20, 6] provided
algorithms to schedule sequential elastic tasks on multiprocessor systems and
further extended the concept of the elastic task to federated DAG-based parallel
task systems in [21, 22]. Beccari et al. [23, 24] provided alternative algorithms
to schedule similar applications by expressing the task period ranges in a linear
programming formulation.

Another commonly used approach to schedule application tasks with timing
variability is to modify the resource reservations. Thiele et al. [25] provide an
online reconfiguration algorithm for the constant bandwidth server. Khalilzad et
al. [26] proposed an adaptive hierarchical scheduling model to accommodate the
adaptive behaviour of the periodic and sporadic tasks by changing the bandwidth
allocation. In contrast, this paper assumes that a bandwidth allocated for a server
under the periodic resource model remains constant and that the workload within
the server can be adapted according to the elastic task model. However, if the
elastic assignment fails, a request for a new bandwidth allocation will be made.
We note that the proposed solution does not take into account possible bandwidth
reclamation or mixed-criticality-based approaches to assign new bandwidths if
no schedulable allocation can be made. Instead, we leave it to the individual
application to handle such failures. For uniprocessor systems, we provide a method
to schedule elastic applications within a periodic resource supply model reservation
in [27].

6.6 Conclusion

Scheduling of elastic applications on reservation-based multiprocessors systems
has not been extensively studied. To address this, we proposed a scheduling
framework based on the minimum-parallelism resource reservation model and
compared different partition-based EDF scheduling mechanisms. The proposed
methods introduce a relatively intuitive approach to scheduling elastic tasks under
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reservation schemes on multiprocessors combining the advantages of the sim-
plicity offered by the MPS reservation and flexibility of the elastic tasks. The
evaluation results indicate the proposed methods outperform the current state-
of-art approaches on average, while in the worst case, none of the approaches
outperforms the other. In future work, we intend to investigate methods to improve
the worst-case performance and evaluate the results on a real system.
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Abstract

This paper proposes a systematic three-stage methodology for migrating
complex real-time industrial software systems from single-core to multi-core
computing platforms. Single-core platforms have limited computational ca-
pabilities that prevent integration of computationally demanding applications
such as image processing within the existing system. Modern multi-core pro-
cessors offer a promising solution to address these limitations by providing
increased computational power and allowing parallel execution of different
applications within the system. However, the transition from traditional
single-core to contemporary multi-core computing platforms is non-trivial
and requires a systematic and well-defined migration process. This paper
reviews some of the existing migration methods and provides a systematic
multi-phase migration process with emphasis on software architecture re-
covery and transformation to explicitly address the timing and dependability
attributes expected of industrial software systems. The methodology was
evaluated using a survey-based approach and the results indicate that the
presented methodology is feasible, usable and useful for real-time industrial
software systems.
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7.1 Introduction

Software evolution has been a continuous process in industrial real-time embedded
software systems with new functionality, performance improvements and bug fixes
introduced with each new version, revision or release [1, 2]. Many of the industrial
systems have been developed over the decades [3], undergoing major revisions
due to technology shifts, changing customer requirements, improved development
processes, among others. One constant factor associated with the evolution of
such systems is that the software architectures and the implementations have
focused on single-core computing platforms. Integrating new data-intensive and
computationally demanding applications withing the system, however, requires
additional computational capacity. Moreover, with the decreasing availability of
the single-core processors, migrating the existing software to multi-core computing
platforms is becoming a necessity. By migration, we refer to the modification
of the existing software to execute on the multi-core platforms, while ensuring
that the performance and quality attributes, such as dependability [4, 5], match
the current system quality and more optimistically, improved much further. Such
migration is essential since the long life-cycle of existing software systems has
resulted in the creation of assets that have become critical for a business [6] and
that a complete redevelopment may not be feasible.

Migrating existing real-time software systems towards multi-core systems re-
quires (i) Identifying the timing requirements of the existing software systems and
(ii) Identifying the technical solutions that can improve the performance, resource
usage and the timing predictability of the software systems [7, 8, 9]. Invariably,
any migration approach should also address the extra-functional attributes such as
scalability, maintainability and portability of the software. Furthermore, the mi-
gration should consider maximum reuse of the existing software while minimizing
the re-engineering efforts.

To address these aspects for the migration of a complex real-time software
system with strict timing and dependability requirements, we used a focus group
discussion to formulate an open-ended Research Question (RQ),
RQ: How to migrate a complex real-time software from a single-core to a

multi-core architecture with maximum software reuse and minimal
re-engineering effort?

We further refined this question into the following sub-questions:
RQ1: Which migration methodology addresses the concerns of software reuse,

dependability and timing requirements?

87



RQ2: How to evaluate and analyse the applicability of different multi-core solu-
tions for embedded control software?

RQ3: What are the tools that facilitate the migration process?
These questions were motivated by the need for migrating a configurable robot

controller software [4] developed at ABB Robotics1, with functionality ranging
from motion control to cloud connectivity. The controller software has close to 140
tasks and 71,128 methods, integrating real-time and non real-time functionalities
with varying Quality of Service (QoS) requirements on a single-core platform.

To address the discussed questions, we used a mixed research methodology
utilising discussions within a focus group and subject experts, complemented with
a review of the state-of-the-art literature, to identify key concerns and provide a
systematic methodology to migrate industrial software with real-time requirements
from single-core to multi-core platforms. Concretely, the paper provides the
following contributions:
• A systematic methodology for migrating complex embedded software from

single-core to multi-core platforms;
• A review of tools that facilitate the migration process; and
• A survey-based evaluation of the proposed methodology.
This paper reinforces the validity of the methodology presented in our previous
work [10] by including a survey-based evaluation of the methodology.

The rest of the paper is organised as follows. Section 7.2 provides an overview
of a robotic system and its controller software. Section 7.3 reviews the existing
software migration methods. Section 7.4 provides an overview of the overall
methodology. Section 7.5 includes a systematic approach focusing on architec-
ture migration, followed by implementation and verification of the migration in
Section 7.6 and Section 7.7 respectively. A review of the tools facilitating the
migration process is discussed in Section 7.8. Section 7.9 presents the evaluation
of the proposed methodology. Finally, Section 7.10 concludes the paper.

7.2 System Overview

The system corresponds to a robotic system consisting of a manipulator arm, a
controller, and a graphical controller interface. The paper focuses on the software
functionality of the controller, which can be divided into functions concerning (i)

1https://new.abb.com/products/robotics/controllers
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configuration, (ii) communication, and (iii) control. The configuration functions
provide the robot programming interface that allows a user to configure and specify
the runtime behaviour of the manipulator. The user is also able to define the robot
environment such as additional sensors and actuators. The communication func-
tions provide a real-time networking capability to enable the controller to interact
with devices such as Programmable Logic Controllers (PLCs). It also includes a
non-real-time communication capability that allows the controller to interact with
enterprise network including PCs and the cloud. The control functions generate
the path the manipulator has to follow based on the user-defined configuration.
The output of the control functions is used to drive controllers that manage the
low-level motor actuation.

The controller software has different runtime modes and the available functions
vary between the modes. The main modes include the “Initialisation mode”,
“Safe-init mode”, “System update and configuration mode”, “Normal operation
mode”, and “Fail-safe mode” [11]. The different modes and the transition between
the modes is shown in Fig. 7.1. At startup, the controller transitions into the
initialisation mode. Here all the tasks are initialised with values based on the
previously saved configuration settings. It enters the safe-init mode if there
are errors during the startup. The behaviour of the controller software can be
configured in the system update and configuration mode. Once the required
configuration has been set, the controller enters the normal operation mode. This
is the operational mode of the controller, where the physical movement of the
robot arm is enabled. It is in this mode that the controller executes the motion
planning algorithms with real-time communication enabled for data exchange with
external sensors and actuators. It transitions into a fail-safe mode from the normal
operation mode if an unexpected error such as an unresponsive sensor, or detection
of possible collision with unexpected objects occurs. During normal operation,
the user-defined instructions from the robot programming interface provide input
to the motion generation components of the software, which in turn generate the
path to be followed by the manipulator. Simultaneously, the sensor information
and actuator commands are read and written by the communication components
based on the user configuration.

Timing related properties of a subset of the tasks that make up the robot con-
troller is provided in the Table. 7.1. There are two tasks, namely TS_Ethercat and
TS_RT, that are responsible for real-time communication between the controller
and the sensors and actuators. The TS_Ethercat task comprises the network driver,
whereas the TS_RT task encapsulates the runtime middleware that provides the
necessary interface for data exchange with other components. The two tasks are
activated by periodic timers of 10 ms period each and their worst-case execution
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Figure 7.1. Main Modes in the System

times (WCETs) are 120 𝜇s and 80 𝜇s respectively. The priorities of TS_Ethercat
and TS_RT are 12 (highest) and 11 (second highest) respectively. Furthermore,
the utilization of these two tasks are 0.012 and 0.008 respectively. The utilization
of a task represents the portion of CPU time required by the task and is calculated
by dividing the WCET of the task by its period. The TS_Ethernet, TS_NRT and
TS_Web tasks are responsible for non real-time communication such as web-based
connectivity for communication with enterprise network and for uploading robot
programs and managing and updating the controller configurations. These tasks
encapsulate the network drivers, non real-time middleware and web server pro-
viding an interface for data exchange between the controller and external devices
respectively. The robot program interpretation is performed by the TS_RPI and
TS_RPI_Transform tasks. These tasks are responsible for converting the robot
program into controller data structures that act as inputs for the trajectory genera-
tion functionality of the controller. The TS_RPI task parses the robot program and
validates its syntactical correctness. The TS_RPI_Transform task then converts
the robot program into a data structure that can be used as input for the trajectory
generation functionality, which allows planning of the robot motion and generating
the required set-points for the controller task (TS_Control). The trajectory genera-
tion functionality is realised with the tasks TS_IPL_Path and TS_IPL_JointPath.
Further, the controller software includes the system state manager tasks, namely
TS_Sys_Events and TS_Sys_Backup, that are responsible for managing different
system level signals and generating events that define the behaviour of other tasks.
For example, the system state manager task can observe a change in the state of
the safety switch signal and generate an event that will trigger a mode change from
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System
Functions

Task
functionality Task Task

Trigger Type
Task

Priority
Task

Period (ms)
WCET

(us) Utilization

RT Comm. Network driver TS_Ethercat timer 12 10 120 0.012
RT Comm. Network middleware TS_RT timer 11 10 80 0.008
Non RT Comm. Network Driver TS_Ethernet timer 5 10 75 0.0075
Non RT Comm. Network Middleware TS_NRT timer 4 50 800 0.016
Non RT Comm. Application TS_Web timer 2 100 200 0.002
Robot Program
Interpreter Parse robot program TS_RPI event from

TS_NRT 3 50 4000 0.08
Robot Program
Interpreter

Format data for
trajectory generation TS_RPI_Transform event from

TS_Sys_Events 6 20 200 0.01
System State
Manager

Monitor and handle
system state events TS_Sys_Events periodic 10 10 60 0.006

System State
Manager Create system backup TS_Sys_Backup event from

TS_WEB 1 100 200 0.002
Trajectory
Generation

Interpolate
Cartesian Path TS_IPL_Path timer 7 20 2000 0.1

Trajectory
Generation

Interpolate
Joint Space Path TS_IPL_JointPath timer 8 20 200 0.02

Controller
Create setpoints
and receive feedback
for motor drivers

TS_Control timer 9 2 100 0.05

Table 7.1. Subset of the tasks in the Robot Controller.

normal operation mode to a fail-safe mode.

7.3 Related Work

Software migration is usually carried out when adopting a different architectural
paradigm than the existing one, such as changing the programming language [12] or
when moving from native server deployments to cloud-based deployments [13, 14].
Sneed [15] proposed a five-step re-engineering planning process for legacy systems,
covering Project Justification, Portfolio Analysis, Cost estimation, Cost-benefit
analysis and Contracting. The author highlights the need for creating measurable
metrics to justify the effort and the improvements achievable with the migration.
Erraguntla et al. [16] discussed a three phase migration method consisting of
analysis, synthesis and transformation phases to migrate single-core to multi-
core parallel environments. During the analysis and synthesis phase, the design
of the existing software is recovered while recommendations for the multi-core
environment are made during the transformation phase of the migration method.
They also provided a reverse engineering toolkit called RETK for the analysis
and synthesis phases. Battaglia [17] presented the RENAISSANCE method for
re-engineering a legacy system. The method focuses on planning and management
of the evolution process.

Menychtas et al. [18] presented a framework called ARTIST, a three-phase ap-
proach for software modernization focusing on migration towards the cloud. They
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categorised the migration into three main phases, Pre-migration, Migration and
Modernisation and Post-migration. During the pre-migration phase, they proposed
a feasibility study to address the technical and economic points of view. During the
migration and modernisation phase, the actual migration is carried out and finally
during the Post-migration phase, the system is deployed and validated. Forite et
al. [19] proposed the FASMM approach to better manage the migration and to
record and reuse the knowledge gained during the migration in other projects. More
recently, Reussner et al. [2] and Wagner [20] proposed model-driven approaches
to software migration. The focus in these approaches is to reverse engineer the
system using automated tools and capture the information in modelling languages
and then use the model-driven approach for further maintenance of the system.

Most of the works discussed so far focused on reverse engineering the existing
system to get an understanding of the system, and then to use this information to
model and transform the system based on the technical requirements. However, an
important aspect we found lacking was emphasis on verification and validation
of the reverse engineering processes. Additionally, while many of these works
focused on architecture transformation and implementation changes, emphasis
on migration of the testing methods was negligible. During our discussions in
the focus group, testing was identified as an important domain which required
investigation as multi-core architectures are more prone to concurrency issues, e.g.,
livelock, deadlock, race-conditions and data corruption along with the interference
due to the contention for shared resources such as the caches affecting the timing
predictability of the overall software system.

7.4 Migration Methodology

Based on the reviewed methods and the extra-functional requirements, we cre-
ate a migration workflow as depicted in Fig. 7.2 and apply the Analyze, Verify,
Transform and Validate approach to this workflow. Essentially, during analysis,
the requirements for the migration process are established and the existing sys-
tem behaviour is recovered. Then the results of the analysis are verified by the
subject experts. New solutions are identified and evaluated during the transforma-
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tion phase. Finally, the applicability of these solutions, along with the migration
process, is validated during the validation phase. Additionally, we consider the
migration process to be iterative in the sense that each stage can be revisited and
decisions can be roll-backed or modified to address issues that may have been
missed or if they do not meet the objective of the migration. A brief overview of
the different stages of the proposed workflow is as follows:

1. During the first stage, we focus on the migration of software architecture.
In this stage, the goal is to synthesize an abstract system model, validate its
accuracy and transform the model for the multi-core environment.

2. In the second stage, the implementation and verification migration, the goal
is to analyse the system source code to identify potential concurrency issues
within the code and transform the code according to the new multi-core
architecture model. Additionally. the existing verification techniques are
augmented with methods relevant for a multi-core architecture.

3. In the third stage, we validate the migration process by identifying the
validation parameters and measuring these parameters and then comparing
them with the values obtained before migration.

7.5 Software Architecture Migration

Many of the real-time systems including the robot controller software have a strong
focus on timing, safety and dependability requirements. Therefore, we need a
well-defined software architecture to support such requirements. As there are
significant differences in the single-core and multi-core platforms, the existing
software architecture should be modified to address the constraints of multi-core
platforms and make the best use of the available resources. To approach this
modification systematically, the software architecture migration stage is divided
into five well-defined phases as shown in the Fig. 7.3. The five phases are :

1. Architecture requirements specification;
2. Architecture abstraction and representation;
3. Architecture recovery;
4. Architecture transformation; and
5. Architecture verification.
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Figure 7.3. Various phases in the software architecture migration.

7.5.1 Architecture Requirements Specification

The architecture requirements specification is the first phase of the architecture
migration process. The requirements are essentially high-level and the extra-
functional requirements of scalability, performance and timing guarantees are
the guiding principles for the complete migration process. The more concrete
requirements are defined during the architecture recovery phase of the migration
process. We also include the identification of a requirements specification and
management process in this phase to better manage the requirements for the rest
the migration process.

7.5.2 Architecture Abstraction and Representation

In this phase, we seek to identify an abstraction level that can accurately represent
the system behaviour. An abstraction level close to the implementation may be too
detailed, while a higher abstraction level can miss critical information that may be
necessary for assuring correct system behaviour. Therefore, to identify the right
abstraction, we need to identify the system properties that can be affected when
moving to the multi-core architectures. Further, a representation model that can
sufficiently capture the system properties should be identified. The representation
model should be easy to comprehend, and should act as a communication tool
between different stakeholders such as the system architects and developers. To
address these issues, we rely on expert interviews and the review of state-of-the-art
literature related to multi-core in the real-time systems domain and the model-
driven engineering domain to guide the selection of the abstraction level and for
the identification of the representation tools.
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Figure 7.4. Software Architecture Representation.

Software Architecure, Real-time Task Models and Representation Tools The
system we considered provides multiple functionalities ranging from embedded
control to cloud connectivity. Therefore, we relied on informal and open-ended
interviews with the system software architects and domain architects to identify
possible abstraction levels. From these discussions, we were able to identify that
the task-level abstraction provides the necessary semantics to capture the system
properties and therefore, can be used during the later stages of the migration
process. Moreover, most of the literature in real-time systems uses the task-level
abstraction for the system representation [21, 8].

There are several modelling languages that allow modelling of software ar-
chitectures and task-level abstraction models of real-time systems. The UML
MARTE2 profile [22], Rubus Component Model [23, 24], UPPAAL [25], Mecha-
tronicUML3 [26], AUTOSAR [27], ART-ML Framework [28], are some of the
possible modelling languages and frameworks that can be used to represent the
system under discussion.

To demonstrate the software architecture abstraction in the proposed method-
ology, we model the software architecture of the robot controller using the Rubus
Component Model as shown in Fig. 7.4. Note that the Rubus Component Model
and its runtime environment consider a one-to-one mapping between a software

2https://www.omg.org/omgmarte/
3http://www.mechatronicuml.org/en/index.html
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component and a task. A software component is the lowest-level hierarchical
element in a component model that is used to model the software architecture of
a system. The software component is a design-time entity that may correspond
to one or more tasks at runtime. For example, the model of a software compo-
nent that conforms to the Rubus Component Model (RCM) [23, 24] is shown in
Fig. 7.5. A software component communicates with other components by means
of input and output data and trigger ports. The trigger ports indicate when the task
(corresponding to the software component) is activated for execution. A software
component can be triggered by an independent source (e.g., a periodic clock) or
by another software component. The properties of the software component such
as their execution times, activation periods and priorities are specified using the
values from Table 7.1. Note that there are two timing constraints, namely Age
(50ms) and Reaction (50 ms), that are specified on a chain of software components
within the software architecture in Fig. 7.4. These timing constraints conform to
the AUTOSAR standard and are supported by several other modelling languages
and methodologies for real-time systems [29].

7.5.3 Architecture Recovery

We need to have a better understanding of existing architecture to be able to modify
and adapt it to new platforms. However, in many cases,the documented archi-
tecture or the intended architecture does not represent the actual implementation.
Such deviations can be attributed to multiple reasons. For example, many of the
software systems are developed using a top-down development approach. As a
result, implementation level changes are not propagated back to the architectural
documents resulting in inconsistencies. Recovering the architecture, therefore,
is an essential step for the migration. While many useful architecture visualisa-
tion tools such as CodeSonar4 and Imagix5 analyse the source code to provide
architecture visualisation, they only provide information on the logical structure
of the software and additionally, they may not be able to detect faulty architectural
patterns within the recovered architecture.

Since the transition to multi-core platforms in general affects the timing be-
haviour of the system, we focus primarily on extracting the temporal properties
of the system. For example, a timing requirement can be derived based on the
communication between TS_IPL _Path and the TS_IPL _JointPath. Here, one
job of the TS_IPL _Path generates data for n jobs of the TS_IPL _JointPath. The
next instance of the TS_IPL _Path task should complete its execution before the

4https://www.grammatech.com/products/code-visualization
5https://www.imagix.com/index.html
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Figure 7.5. Properties of a Software Component.

nth job of the TS_IPL _JointPath is executed. Further, we consider the system
to be modelled with cause-effect task chains [30, 31], which implicitly consider
maintaining the causality in the underlying communication. These chains are
constrained by the timing constraints similar to that of the AUTOSAR standard.

At the task-level abstraction, each task can be represented in terms of its pe-
riod, worst-case execution time and various types of timing requirements such
as deadline, data age, and data reaction constraints [32]. Note that the tasks and
their corresponding software components at the software architecture abstraction
have the read-execute-write semantics, which allow them to be adapted to comply
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with the Logical Execution Time (LET) model [33]. In addition to these, there can
be indirect temporal requirements such as the number of messages in a message
queue should not be less than a specific value during a certain operating mode,
which then requires that the task producing the messages for the queue can be
blocked only for a duration that does not violate this requirement. Therefore, we
need a comprehensive multi-dimensional software comprehension and reverse
engineering approach to extract such information from the existing software ar-
chitecture, specifically, the timing properties and constraints, which are crucial in
verifying timing predictability of the system [32].

To extract the necessary timing requirements, such as the periodicity, execution
times and deadlines, we require analysis of multiple data sources. We identified that
the architecture documentation, the run-time execution logs and expert validation
of the analysis are essential resources for the architecture recovery phase of the
migration process, also shown in Fig. 7.6.

Architecture
Recovery

Run time 
Analysis

Expert
Validation

Documentation
Analysis

Figure 7.6. Architecture analysis.

Documentation Analysis The architecture of large software intensive systems
is normally documented according to the “4+1” architectural view model [34]
or an enhanced variant. The format for architecture documentation can vary de-
pending on the internal process and industry-relevant certification requirements.
SysML [35] and UML models are some of the formal description formats for
documentation used in the industry. Complementing such formal description
formats are the textual documents explaining the architecture in natural language
as a part of the documentation. These high-level architectural models and docu-
ments identify the different components of the system and the interaction between
components, summarise the design patterns and technologies employed in the
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implementation and provide a concise overview of the functions of these compo-
nents. By analysing the documentation, it should be possible to identify chains
of dependent components, the tasks associated with these components and the
expected timing behaviours. The system we considered was documented both
in UML models, as well as textual documents.However, during our analysis, we
found that there was limited information on expected timing behaviours available
in the architecture documents, necessitating other analysis approaches such as
run-time analysis and expert validation.

Run-time Analysis While the high-level documents are good sources of infor-
mation, the information provided by such documentation may either be incomplete
or may not reflect the actual implementation. One reason for such an inconsistency
is due to the structure of the development process, where the information flow
is usually top-down, and the changes made at the implementation level are not
propagated back to the architecture documents [36]. Additionally, these industrial
software systems have been incrementally developed over many years with the
addition of new functionality, bug fixing, and other optimisations in each incre-
ment. Therefore, due to the accumulation of undocumented changes made during
implementation over the years, relying solely on high-level documentation as the
only source of information for modelling the system can result in an inaccurate
representation of the expected system behaviour. This makes it necessary to con-
sider the run-time logs as complementary sources of the system information. One
approach to understanding the run-time behaviour of the system is the tracing and
measurement-based approach [37]. Using this approach, information such as num-
ber of context switches, response times, execution times, number of task instances,
periodicity of the tasks, among others can be collected. By using dynamic analysis
and visualisation tools such as Tracealyzer [37], additional information such as the
communication flow between different tasks, identification of shared resources,
task chains and precedence constraints between the tasks can be obtained. The
information gained from the run-time analysis can be used to refine and enhance
the model.

The run-time analysis comes with its own set of conundrums. As the system
under consideration is configurable, i.e., the user can configure and specify the
runtime behaviour, it is difficult to identify a configuration that can be a single
representative of possible configurations for run-time analysis.

One possible approach to address this issue is to use the “maximum load”
approach. We consider the system to be in “maximum load” state, if under normal
operation mode, all system tasks are active and that each task is executing its most
computationally heavy or memory intensive jobs. Relying on a single configuration,
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however, is not sufficient to make any statistically reliable conclusions about the
measurements. Therefore, another argument would be to gather run-time behaviour
from as many possible configurations as feasible. Again, identifying this “feasible”
number is not straight forward. This is made even more complicated by the
continuous development process, where code is modified and new builds generated
daily. Identifying a fixed version of the software for analysis becomes non-trivial
for such cases. Further, since the controller software operates under different
modes, the “maximum load” approach could be pessimistic. Depending on the
system under migration, we will need to identify an appropriate configuration and
analyse the run time behaviour of each mode independently. For the controller
software considered, the “normal operation mode” had the highest resource demand
and since all the other modes run only a subset of the “normal operation mode”
tasks, we use the maximum load configuration of the “normal operation mode”and
ensure that all the required system software components are active during the trace
period. Note that we rely on the latest released version of the software.

During the run-time analysis of our system, we found that there were inconsis-
tencies between the expected and observed behaviours. A few of the inconsistencies
were a result of incorrect configuration of the instrumented code, while others
were actual deviations from the expected behaviour. For example, the incorrect
configuration resulted in the trace logs showing multiple instances of the jobs of
a task as a single job of the same task. This observation highlights the fact that
relying on a single source for information is not only ineffective but also error-
prone. This necessitates the need for expert validation of the collected information
to create a sufficiently accurate system model.

Expert Validation Architectural design decisions are made by analys-ing mul-
tiple factors such as domain requirements, dependencies on services provided
by the operating systems and the underlying hardware platform, among others.
However, the high-level architectural models and documents do not describe the
rationale behind the design decisions and even if they do, such information is lim-
ited. Moreover, in legacy systems, such documents do not completely reflect the
implementation [36]. Furthermore, as the information from the run-time analysis
is quantitative and statistical in nature, it is possible to misinterpret any deviation
from a commonly occurring pattern as an inconsistency whereas this could have
been a design decision. To avoid such misinterpretations and improve system
model accuracy, discussions with domain experts are mandatory during the archi-
tecture analysis. These discussions will be used to understand the rationale behind
the design decisions, and to validate the observations of the documentation and the
run-time analysis phases. In our work, we were able to validate the inconsistencies
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such as the deviation from a commonly occurring pattern as a design decision and
also mark some of the observed results as an outcome of incorrect code instru-
mentation configuration. For example, due to incorrect configuration of the code
instrumentation library, the periodicity of the TS_RPI observed during run-time
analysis phase did not match the values expected by the experts. the functional
behaviour however, was accurate, prompting a separate analysis. This analysis
identified incorrect configuration of the code instrumentation as the root cause for
observed deviation in the periodicity.

7.5.4 Architecture Transformation

As discussed earlier, the architecture transformation phase focuses primarily on
evaluating potential solutions and identifying the most appropriate ones for the final
implementation. Before we evaluate any solution, we need to identify the system
requirements that need to be considered to identify, evaluate and qualitatively rank
possible solutions. Since in our case, the migration to multi-core will primarily
affect the runtime behaviour, we focus on the explicit temporal requirements,
implicit requirements such as the number of messages in a queue and assigned QoS
levels to different functional domains. An important requirement here is to ensure
that this transformation results in improved system predictability, performance
and that the architecture is scalable in terms of the number of cores and new
functionality that needs to be integrated into future versions of the software. Since
the terms predictability, performance, and scalability are generic in nature, we need
to ensure that we have measurable definitions for these terms. For example, we use
scalability to refer to the capability of the controller software to control more than
one manipulator on the same hardware platform. Once we define the evaluation
criteria, we then move towards the evaluation process itself. The evaluation can be
carried out in various ways depending on the evaluation metric and the solution
being considered, such as simulation, model-checking and analytical calculations.
Once the evaluation of possible solutions is complete, we rank these solutions
based on an agreed evaluation metric and based on these rankings, we select the
solutions for the final implementation phase. To ensure that this transformation is
systematic, we divide the transformation phase into the following steps:

1. identification of potential solutions;
2. evaluation of the solutions;
3. ranking of the solutions;
4. selection of the solutions.

101



Identification of potential solutions Identification of potential solutions can be
done in many different ways. Although we don’t make any specific recommenda-
tions, we would like to point out that the number of potential solutions could be
infinitely many and we hypothesize that evaluating each solution will be impossible.
Especially in the case of real-time systems, where the search space in terms of
near-optimal solutions is large [8, 9, 38, 39]. Therefore, a good starting point in
this stage are the domain experts. Also, the information from the architecture
abstraction and recovery phases can be a useful guide in reducing the search space.
In our case, we use expert interviews and review the state-of-art in the real-time
systems domain to identify potential solutions. Another important consideration is
that since application developers are focused primarily on the application function-
ality, they rely on the operating systems to provide support for real-time properties.
This implies that in many cases, only those mechanisms supported by an operating
system can be considered as part of the potential solution set.

As highlighted earlier, the purpose of an abstract system model is to capture
all the relevant properties of the system but without the functional complexity.
This enables creation of synthetic tasks for simulation and verification of new
design solutions. These abstract task sets can be modified and verified in short
time spans when compared to modification of the actual implementation of the
system. Many of the real-time workload models such as those reviewed in [21]
have been successfully used to represent practical systems such as in the avionics
domain as well as in the automotive domain. While many of these workload
models consider the tasks to be independent, we found that the system under study
violates this assumption and that new jobs of tasks are triggered by jobs of other
tasks. Also, the presence of event triggered components within the system along
with multi-rate task chains implementing a single functionality, requires that the
precedence constraints as well as task chains be considered when considering
potential solutions [30].

Some of the relevant issues that should be addressed by the potential solutions
for transitioning from single core to multi-core platforms were highlighted by
Macher et al. [40], and Nemati et al. [41]. For example, use of single-core hardware
implies that the system tasks execute in sequential manner. If run on multi-core, the
task precedence constraints may not be maintained affecting system dependability.
Additionally, systems designed for single-core do not require any mapping of
software and multiple compute resources. However, predictable execution on multi-
core is provided by partitioned scheduling approaches [39]. Ad hoc partitioning
can affect system performance and scalability. Multi-level caching can cause data
inconsistencies when tasks sharing a variable are executing on different cores [42].
In the case of fixed-priority scheduling, priority assignment can impact response
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times [38].

Evaluation of the solutions Once the potential solutions have been identified,
the next step is to evaluate these solutions. By evaluation, we refer to the applica-
tion of the potential solutions from the previous step to the abstract model from
the architecture recovery stage and measurement of the identified metrics. The
evaluation can be done in different ways as already highlighted earlier such as sim-
ulation in the case of ART-ML framework [28] or the Cheddar tool [43], analytical
calculations if using techniques such as those identified in [39], or model-checking
if using the timed automata approach specified in [44]. For the system described
in Section 7.2, one strategy could be to allocate the parts of the system that are con-
strained by the timing constraints to one core and rest of the software components
to other cores (e.g., TS_IPL_Path, TS_IPL_JointPath, and TS_Control to one core
and the rest of the components to the other core(s)). Another strategy could be
to allocate the software components to the cores such that the specified age and
reaction delays are minimized. Another strategy could be based on precedence
constraints between the software components, which should be on the same core
(e.g., TS_Web and TS_Sys_Backup have an implicit precedence constraint as the
latter is triggered by the former, hence both should be on the same core). Similarly,
another allocation strategy could be based on the criticality levels associated to the
software components so that non safety-critical software cannot interfere with the
safety-critical software as proposed in [45]. We would like to point out that given
the safety-critical nature and complexity of the system, we hypothesise that the
potential solution identification and evaluation steps are rather time consuming
and are critical in the migration process. The time spent during these phases can
potentially result in practical solutions that ensure that the migration process is
successful in meeting the extra-functional requirements.

Moving forward, we return to the question of identifying the best solution
among the many evaluated solutions. To guide in this direction, we use the ranking
approach as follows.

Ranking of the solutions The ranking step of the transformation phase orders
the evaluated solutions in terms of certain criteria. For example, the evaluated
solution may be required to adhere to safety and security requirements of the
domain. Further it may be possible that the extra-functional properties such as
portability between different hardware platforms may be prioritised over perfor-
mance improvement on a single hardware device. To address such requirements
in a systematic manner, we propose to use the following multi-step approach:

• identify parameters to rank potential solutions;
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• provide measurable definitions to the identified parameters;
• arrive at a consensus on measurement methods for the parameters;
• prioritize or assign weights to the parameters for trade-off analysis;
• rank the evaluated solutions.
We believe that this approach provides a systematic way to measure effective-

ness of the evaluated solutions and guide in selection of the final solution. By
identifying measurable parameters, the methods to measure them, and prioritize
them if a trade-off is necessary, we can remove any ambiguity associated with the
perceived effectiveness. To identify these parameters, we propose focus group
discussions involving the different domain experts.

Selection of the solutions Once the potential solutions have been evaluated and
ranked, the selection of final solutions should be rather straight forward. However
we would like to point out the fact that there could be solutions that may optimize
one requirement while negatively affecting another requiring a trade-off analysis
to select a final solution.

Architecture Verification

The last step in the architecture transformation phase is the verification of the
transformed architecture. Here we essentially verify if the transformed architecture
complies with requirements from the architecture requirements specification phase
and the recovery phase. The verification stage is rather simple and straight forward
since the different steps in the transformation phase involve verification in the
evaluation stage with the systematic ranking and selection approach.

7.6 Implementation Migration

So far, we discussed the transformation at the architecture level of the system in
our migration process. We now discuss the processes necessary to implement the
transformed architecture at the source code level. Although not directly related
to the migration process itself, we consider that some form of refactoring at the
source-code level may be necessary prior to the migration process. Depending on
the existing logical architecture and the quality of the software, the refactoring
may address different concerns. For example, removal of duplicate and dead code,
creating components based on functionality, adoption of a layered architecture
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among others. For further discussion, we assume that the system has a layered
architecture with well-defined components, that the logical architecture is capable
of handling new components and modifications in the abstraction layers, and that
the source code is separated according to the components.

Further, we classify the architecture solutions as abstract component level or
functional component level solutions. For example, if the solution is a new priority
order for the tasks, then it is functional component level solution if the tasks are
associated with the component and that the priorities can only be changed in the
component files. If it is a new synchronisation protocol, then it is an abstract level
solution, which is used by all components and may need a new implementation.
Therefore, before we make the changes, we identify components that need to
be modified, map solutions that need new components and then implement the
changes.

7.6.1 Component Identification and Creation

The solutions selected during the transformation phase may require that changes
be made to the existing components in the system. For example, if the components
use nested semaphores and if the identified solution does not support nested
semaphores, then such nested semaphores need to be removed. To do this in a
systematic manner, we index and categorise the transformed solutions, review
the solutions with the domain experts and component owners and associate each
component with the solution that requires that component to be modified. For
example, the trajectory generation component may require that its source code be
modified to accommodate the changes necessary to migrate to multi-core platform.
We then review the solution with the owners of the trajectory generation component.
Further, if there are solutions that are classified as abstract-level solutions or which
could not be mapped to existing components, we create new components for such
changes. For example, if a new real-time middleware, that will provide a common
inter-task communication mechanism is to be implemented, then a new component
will be created.

7.6.2 Implementation

Once all components have been identified for modification and new components
created, the necessary changes are implemented in the source code. Although the
concurrency related issues are addressed during the architecture transformation
phase, it is possible that they could manifest during the implementation stage.
Therefore, coding guidelines that address these issues are provided to the developers
to minimise the manifestation of these issues during the implementation.
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7.7 Verification Migration

The system verification and validation stage is the final stage of the migration
process. Typically, for the system such as the one being considered, a reliable
verification process is already in place. This includes the usual verification ap-
proaches such as unit testing, functional testing, and system integration tests. Since
the architectural transformation is primarily related to the runtime behaviour and
performance, we expect that most, if not all existing tests related to functional
behaviour to be valid. Therefore, we hypothesise that any failures here could be
related to the concurrent execution of the system tasks. To maintain the quality of
the system software, we focus on augmenting the existing tests with concurrency
related testing approaches along with performance verification. Again, to approach
this enhancement in a systematic way, we divide the verification migration process
into concurrency testing and the migration validation phase.

7.7.1 Concurrency Testing

The goal during this phase is to augment the existing verification process to identify
concurrency related issues. These include race conditions, atomicity violations and
deadlocks. A comprehensive review can be found in the work by Bianchi et al. [46].
We propose the analysis of solutions during the architecture transformation phase
to identify scenarios that could lead to potential concurrency issues. This way,
it will be possible to create tests for those specific scenarios. Additionally, static
code analysis that identifies concurrency bugs is added to enhance the verification
process.

7.7.2 Migration Validation

During this phase, we focus on validation of the migration process itself. We
begin by identifying the parameters to qualitatively validate the outcome of the
process. We use two metrics for this purpose: (i) results of the functional and
system integration tests, and (ii) performance related parameters such as response
times. In the first case, no new failures should be introduced after the migration. In
the second, the values of the performance parameters should not be less than those
measured with the pre-migration version. We point out here that although the
validation is the last step, depending on the development process, this validation
can be applied to each build prior to release. By using the results of the validation
with each build, the pace of the migration process can be measured.
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7.8 Tools for Migration

Software migration from single-core to multi-core architectures is a complex
process and requires the use of different tools at different stages of the migration
process. Here, we review some of the tools that can be used during the different
phases of the migration process.

7.8.1 Architecture Representation

Software requirements and the architecture can be described in natural language
and as models using different modelling languages such as the UML. For embed-
ded systems with timing requirements, there exist many tools that allow modelling
and specification of different views of the system. The APP4MC tool6, allows
modelling and specification of the hardware as well as software components and
provides support for scheduling algorithms. Another tool is the MARTE [47]
profile for UML. The MARTE profile extends the UML models to include de-
scription of timing requirements. The MAST tool-suite7 allows for modelling as
well as performing automatic schedulabilty analysis and supports many of the
common scheduling algorithms for single-core as well as multi-core architectures.
UPPAAL [25] is another tool for modelling the software as timed-automata and
it supports model checking for formal analysis and verification. A few concerns
with many of these tools are that some have steep learning curves, while others
such as UPPAAL are not scalable to large systems and almost all lack support for
automatic conversion of existing source code to abstract models.

7.8.2 Architecture Recovery

For architecture recovery, static code visualization tools such as CodeSonar and
Imagix could be used. For dynamic analysis, tools which provide visualization
of the run-time behaviour along with statistical information on timing properties
can be effective. For example, Tracelyzer allows visualization of the run-time
behaviour and provides different views to analyse this information.

7.9 Evaluation

We chose a survey-based approach to evaluate the proposed methodology. We
followed the guidelines provided by Kitchenham et al. [48] for survey-based

6https://www.eclipse.org/app4mc/
7https://mast.unican.es/
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research and the discussion of the results. We begin by describing the design of
the survey and then discuss the results of the survey.

7.9.1 Survey Design

As a first step in the survey-based evaluation, we identified (i) feasibility, (ii) usabil-
ity and, (iii) usefulness as the evaluation objectives for the migration methodology.
Next, we identified the target population for the evaluation to be those organisations
that develop complex real-time software systems such as industrial automation sys-
tems and construction vehicles. We identified a sample from the target population
in a non-probabilistic manner through convenience and judgement based sampling.
We created the survey instrument in the form of online questionnaire that included
both close and open ended questions. The close ended questions were designed to
verify the generalisation of the observations and the applicability of the different
steps in the methodology. The open ended questions required the respondents
to provide their opinion in a textual format on feasibility and usefulness of the
methodology. The complete questionnaire was piloted by requesting colleagues
not involved in the study to ensure clarity of language before it was shared with the
respondents. The questionnaire was made available digitally and included a brief
overview of the purpose of the questionnaire. The respondents were requested
to read about the presented methodology before they answered the survey. The
received responses were then analysed to evaluate the methodology.

Evaluation Objectives

As previously mentioned, we identified three key objectives for the evaluation,
namely feasibility, usability and usefulness of the methodology. For each of these
objectives, we adopt the definitions used by Adesola et al. [49] to evaluate their
business improvement process methodology. Briefly, we use feasibility to imply
that all the steps in the methodology can be followed in practice. We use the term
usability to refer to the ease of applicability of the methodology steps and the
tools mentioned therein. We use usefulness to refer to the outcome of applying
the methodology to relevant systems by an organisation. Furthermore, we also
included the objective of validating the possibility of generalising key observations
in the methodology.

Target Population and Sampling Strategy

To address the evaluation objectives, the target population was identified as organ-
isations developing complex real-time systems. As for the sample, we identified
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2 different departments within the same organisation working on independent
and unrelated products and also two other organisations. We then identified 9
expert practitioners from the sample group as the most relevant for the evaluation.
The participants were chosen based on their experience in managing and develop-
ing software(10+ years) for industrial systems and for background in multi-core
technologies and their knowledge of the application domains.
Table 7.2. Mapping among the different steps of the methodology, the evaluation type for

each of the step and the associated question IDs.
Methodology Stage (Step) Evaluation Type/ Question

No. Of Questions ID

Architecture Abstraction and Representation (General) Explicit : 1
Implicit : 6

11
27-32

Architecture Abstraction and Representation
(Expert Interviews)

Implicit : 6 27-32

Architecture Abstraction and Representation (State-of-art in Real-time Systems) Implicit : 6 27-32
Architecture Abstraction and Representation (State-of-art in Model-Driven Engineer-
ing)

Implicit : 6 27-32

Architecture recovery (Documentation Analysis) Explicit : 3
Implicit : 6

13-15
27-32

Architecture recovery (Runtime Analysis) Explicit : 7
Implicit : 6

12, 16- 21
27-32

Architecture Recovery (Expert Validation) Implicit : 6 27-32
Architecture Transformation (Identification of Potential Solutions) Implicit : 6 27-32
Architecture Transformation (Evaluation of the Solutions) Implicit : 6 27-32
Architecture Transformation (Ranking of the Solutions) Explicit : 3

Implicit : 6
22- 24
27-32

Architecture Transformation (Selection of the solutions) Implicit : 6 27-32
Architecture Verification Implicit : 6 27-32
Implementation Migration (Component Identification and Creation) Implicit : 6 27-32
Implementation Migration (Implementation) Implicit : 6 27-32
Verification Migration (Concurrency Testing) Implicit : 6 27-32
Verification Migration (Migration Validation) Explicit : 2

Implicit : 6
25-26
27-32

Tools for Migration (Architecture Representation) Implicit : 6 27-32
Tools for Migration (Architecture Recovery) Implicit : 6 27-32

Instrument Design

The survey was designed in the form of a questionnaire, combining nominal, close-
ended questions, and the open-ended questions requiring textual input from the
respondents. The questionnaire was designed to address two different aspects, (i)
problem relevance and (ii) methodology evaluation. For the problem relevance,
we developed six questions to verify if the respondents were considering multi-
core platforms for their products. The rest of the questionnaire was focused on
methodology evaluation. We classified the evaluation related questions as either
implicit or explicit. The implicit questions required the respondents to reflect on
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the overall feasibility, usability and usefulness of the methodology. The explicit
questions were designed to validate the generalisation of some of the observations
made in the methodology. Table 7.2 shows the mapping among the different steps
of the methodology, the evaluation type for each of the step and the associated
question IDs. Appendix 8.1 shows the questionnaire.

7.9.2 Survey Results and Discussion

As mentioned previously, the questionnaire was shared with nine carefully identi-
fied participants from the sample population. Of the nine participants invited, five
respondents participated in the survey. We use the labels A,B,C,D and E to refer
to each of the respondent individually. We discuss the results for the objectives
of problem relevance, generalisation, overall feasibility, overall usability and the
overall usefulness.

Problem Relevance From the problem relevance perspective, 4 of the 5 the
respondents, (A,B,C and E) said that their applications were not designed for multi-
core. Respondent D said that their applications were designed for multi-core but
they have been developed from the scratch with only limited reuse of existing code.
Respondents C and E confirmed that they are planning to migrate to a multi-core
platform while the rest of the respondents did not provide any information. Addi-
tionally, the same four respondents chose the option of redesigning the application
while reusing the existing code over developing the application from scratch. The
responses indicate that migration to multi-core platforms is being considered in
the industry and at the same time, the respondents prefer reusing the existing code
over the development of the applications from scratch.

Generalisation and Feasibility Since the methodology was developed based
on observations of one system, we created the questionnaire to verify if the ob-
servations made in different steps can be generalised for other complex real-time
software systems as well. This was done by asking directed nominal questions
focused on architecture representation, architecture recovery (runtime analysis and
documentation), architecture transformation (ranking of solutions), and verifica-
tion migration. For the architecture representation, the results indicate that only
parts of the application can be described by timing properties such as worst-case
execution times, periods and deadlines.

Similar to the observations about lack of information in the documentation, 4
of the 5 the respondents, (A,B,C and E) said that the application design was not
fully documented. Further, only one respondent said that the timing properties
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were discussed in the design documentation while the rest of the respondents
said that the timing properties of only a few critical parts of the application were
discussed in the documentation.

The methodology relies on the presence of diagnostic information such as
execution times and periodicity for architecture recovery. All the respondents
said that their systems provide such diagnostic information. Furthermore, all the
respondents mentioned that their applications had multiple configurations and that
the runtime behaviour depended on the configuration. None of the respondents
said that they tested all possible configurations but only a few. Four out of five
respondents (A, B,C and D) said they tested average-case configurations. Further-
more, respondents A and E said that they test the worst-case configurations while
respondent D said that they test the best-case, average-case as well as the worst-
case configurations. This indicates that identifying a representative configuration
for architecture is not straight forward and can depend on individual application
requirements.

Evaluation and ranking of solutions is an important step in the methodology.
Here we assumed that it will be possible to identify and provide measurable metrics
for ranking possible multi-core solutions. To verify if the assumptions are valid,
the respondents were explicitly asked if they can provide measurable parameters
and also prioritise them. Four out of five respondents (A, B D and E) agreed that
they can define as well as prioritise, while respondent C answered negatively.

For the verification migration stage of the methodology, a key assumption is
that the complex real-time systems such as the one discussed in this paper have
a robust testing mechanism in place for verifying functional correctness. All the
respondents agreed that they do have such a mechanism in place. Further, all
respondents agreed that they will reuse the existing tests to verify the behaviour of
the systems after migration, which is consistent with the assumptions made in the
proposed methodology.

The results of the questionnaire so far indicate that much of the observations can
be generalised to other complex real-time systems. One key observation however,
is that describing all of the application components with timing properties may
not be possible. For the steps not discussed in generalisation, we address them
from the overall feasibility perspective discussed next.

Overall Feasibility In order to validate the feasibility of the methodology, i.e.,
to verify if all the steps of the methodology can be followed, the respondents were
asked to answer if they found the methodology feasible and to describe the rationale
behind their choice. Four out of five respondents (A B D and E) considered the
methodology to be feasible while respondent C considered otherwise. When
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describing the rationale, respondent C said that they needed more information
and the correct answer would actually be that they are not sure. Respondents
B and E did not explain the rationale. Respondent A and D agreed that it is
possible to represent the architecture at a feasible abstraction level and that the
methodology covered all the critical steps. One concern however was that the
industrial applications are rather big, and therefore we need to address the migration
in parts and avoid a “big bang” approach.

Overall Usability The survey also included questions to evaluate the overall
usability of the methodology, i.e., to verify if the steps in the methodology are
workable and are easy to apply in practice. Similar to the question of feasibility,
four out of five respondents (A B D and E) answered positively while respondent
C said no. When describing the rationale, respondent C said that their correct
answer would actually be that they are not sure. Respondent A and B said that
the transformation phase was uncertain but the steps are general enough to be
followed and that the difficulty in following the steps may depend on the “archi-
tecture, requirements and availability of tools”. Similar response was provided
by respondent D who said that the level of modelling may vary depending on the
company. Based on the responses it can be observed that the steps in the proposed
methodology can be followed in general but the overall usability is dependent on
individual applications.

Overall Usefulness Another objective of the evaluation is to assess overall
usefulness of the methodology for the target population. To address this, the
respondents were asked to evaluate “Usefulness: if the methodology can produce
results that the organisation will find useful?”. Two out of five respondents (A and
B) consider the methodology to be useful for the industry, whereas the remaining
three respondents consider the methodology to be “partially” useful. Respondent
B justified their choice by highlighting the general applicability of the steps and
respondent A said that having such a methodology will create a “common under-
standing” between the different stakeholders and the developers, thus increasing
the possibility of success and decreasing risks. Respondent C said the it may
not be possible to follow the steps completely, but the ideas can be “useful”. A
similar observation was made by respondent D who said it will be necessary to
consider the product to see if the methodology fits the product being considered for
migration. Although it is not possible to draw a straight forward conclusion about
the usefulness of the methodology, we can observe from the responses that having
a methodology can reduce the risks of migration projects but the methodology
will have to be adapted to suit individual application needs in the industry.

112



Discussion The proposed methodology was evaluated for feasibility, usability
and usefulness by expert practitioners via a questionnaire. From the feasibility per-
spective, the analysis of the questionnaire responses indicate that the methodology
covers the critical steps necessary for a software migration. From the usability
perspective, the analysis of the responses shows that the different steps can be
applied in practice but depending on the application, the abstraction level and
the modelling requirements will depend on individual applications. From the
usefulness perspective, the responses show that following the methodology steps
can decrease the risks associated with the migration. From the Generalisation per-
spective, the response show that the observations made in the methodology can be
extended to systems other than the robotic system considered, while highlighting
the fact that it may not always be possible to describe the timing properties for all
of the application components.

Threats to Validity Since the evaluation of the methodology has been carried out
using a survey, we include a discussion on the validity of the results. Kitchenham et
al. [48] advocates that a survey is reliable if it has been administered multiple times
and if we get similar results each time. In our case, the survey was administered
only once. This implies that the results may vary if the respondents were to answer
questionnaire at different times. However, much of the questionnaire had nominal
questions and the number of options provided were binary but with an additional
option to provide textual information thereby limiting the possibility of variability
in the responses. Furthermore, although the sample group was carefully chosen in
a non-probabilistic manner, it is possible that a different sample of respondents
may have provided different responses, affecting the validity of the conclusions
drawn from the survey results. While the survey included questions relating to
generalisation of the observations, not all of the methodology steps were explicitly
considered but were included under the general questions of overall feasibility,
usability and usefulness. Explicit questions may have lead to a different conclusion
from the one discussed in the paper.

7.10 Conclusion

Migration of complex embedded software from single-core to multi-core comput-
ing platforms is non-trivial. To ensure a successful migration of these software
systems, a systematic approach is needed that takes multiple software engineering
perspectives into account such as software processes, software architectures, re-
quirements engineering, reverse engineering, model-based development, real-time
scheduling and schedulability analysis. In this paper, we presented a systematic
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multi-stage methodology for migrating real-time industrial software systems from
single-core to multi-core computing platforms. In this regard, we studied a com-
plex real-time software system from the automation industrial domain that requires
such a migration. We used focus group discussions, expert interviews and reviewed
the literature to guide the development of the migration strategy. We identified the
software architecture transformation as the main phase in the migration process
and presented a systematic approach to perform the transformation with emphasis
on the architecture recovery and an evaluation mechanism for possible multi-core
solutions. We used task-level abstraction of the system to drive the transformation
and associated timing properties to task-level models and proposed their use as
input for the evaluation of multi-core solutions. To select suitable solutions from
the set of evaluated approaches we proposed ranking of these solutions based on
measurable parameters for the final implementation and we reviewed some of
the tools that can be used during the migration process. We evaluated feasibility,
usability and usefulness of the methodology using a survey-based approach. Ma-
jority of the respondents agreed that the methodology is feasible, usable and useful
in general for the industrial applications. The evaluation also revealed that the
methodology will have to be individually adapted to each system under migration.

Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 764785, FORA—Fog Computing for
Robotics and Industrial Automation, the Swedish Governmental Agency for Inno-
vation Systems (VINNOVA) through the projects DESTINE and PROVIDENT,
and the Swedish Knowledge Foundation (KKS) through the projects HERO, FI-
ESTA and DPAC. We would also like to thank our industrial partners for providing
valuable feedback via the survey.

114



Bibliography

[1] Ned Chapin, Joanne E. Hale, Khaled Md. Kham, Juan F. Ramil, and Wui-Gee
Tan. Types of software evolution and software maintenance. Journal of
Software Maintenance, 13(1):3–30, January 2001.

[2] Ralf Reussner, Michael Goedicke Wilhelm Hasselbring, Birgit Vogel-Heuser,
Jan Keim, Lukas Märtin, editor. Managed Software Evolution. Springer
Nature Switzerland AG, 2019.

[3] Johan Kraft, Yue Lu, Christer Norström, and Anders Wall. A Metaheuristic
Approach for Best Effort Timing Analysis Targeting Complex Legacy Real-
Time Systems. In 2008 IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 258–269.

[4] Goran Mustapić, Johan Andersson, Christer Norström, and Anders Wall. A
Dependable Open Platform for Industrial Robotics – A Case Study. In Rogério
de Lemos, Cristina Gacek, and Alexander Romanovsky, editors, Architecting
Dependable Systems II, pages 307–329. Springer Berlin Heidelberg, 2004.

[5] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE Transactions on
Dependable and Secure Computing, 1(1), Jan 2004.

[6] G. Mustapic, A. Wall, C. Norstrom, I. Crnkovic, K. Sandstrom, J. Froberg,
and J. Andersson. Real world influences on software architecture - interviews
with industrial system experts. In Proceedings. Fourth Working IEEE/IFIP
Conference on Software Architecture , 2004.

[7] Saad Mubeen, Elena Lisova, and Aneta Vulgarakis Feljan. Timing pre-
dictability and security in safety-critical industrial cyber-physical systems:
A position paper. Applied Sciences, 10(9):3125, 2020.

115



[8] Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Alt-
meyer, and Robert I. Davis. A survey of timing verification techniques for
multi-core real-time systems. ACM Comput. Surv., 52(3):56:1–56:38, 2019.

[9] Robert I. Davis and Liliana Cucu-Grosjean. A survey of probabilistic schedu-
lability analysis techniques for real-time systems. LITES, 6(1):04:1–04:53,
2019.

[10] Shaik Mohammed Salman, Alessandro Vittorio Papadopoulos, Saad Mubeen,
and Thomas Nolte. A systematic migration methodology for complex real-
time software systems. In 2020 IEEE 23rd IEEE International Symposium
on Real-Time Distributed Computing, pages 192–200.

[11] Goran Mustapić, Johan Andersson, Christer Norström, and Anders Wall. A
dependable open platform for industrial robotics – a case study. In Rogério
de Lemos, Cristina Gacek, and Alexander Romanovsky, editors, Architecting
Dependable Systems II, pages 307–329, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[12] Leszek Wlodarski, Boris Pereira, Ivan Povazan, Johan Fabry, and Vadim
Zaytsev. Qualify First! A Large Scale Modernisation Report. In SANER,
pages 569–573. IEEE, 2019.

[13] Philip Church, Harald Mueller, Caspar Ryan, Spyridon V. Gogouvitis, An-
drzej Goscinski, and Zahir Tari. Migration of a SCADA system to IaaS
clouds – a case study. Journal of Cloud Computing, 6(1):256, 2017.

[14] Konstantinos Plakidas, Daniel Schall, and Uwe Zdun. Software Migration
and Architecture Evolution with Industrial Platforms: A Multi-case Study.
In Carlos E. Cuesta, David Garlan, and Jennifer Pérez, editors, Software
Architecture, volume 11048 of Lecture Notes in Computer Science, pages
336–343. Springer International Publishing, Cham, 2018.

[15] H. M. Sneed. Planning the reengineering of legacy systems. IEEE Software,
12(1):24–34, 1995.

[16] Ravi Erraguntla and Doris L. Carver. Migration of sequential systems to
parallel environments by reverse engineering. Information & Software Tech-
nology, 40(7):369–380, 1998.

[17] M. Battaglia, G. Savoia, and J. Favaro. Renaissance: a method to migrate
from legacy to immortal software systems. In Proceedings of the Second

116



Euromicro Conference on Software Maintenance and Reengineering, pages
197–200, 1998.

[18] Andreas Menychtas, Kleopatra Konstanteli, Juncal Alonso, Leire Orue-
Echevarria, Jesus Gorronogoitia, George Kousiouris, Christina Santzaridou,
Hugo Bruneliere, Bram Pellens, Peter Stuer, Oliver Strauss, Tatiana Senkova,
and Theodora Varvarigou. Software modernization and cloudification using
the ARTIST migration methodology and framework. Scalable Computing:
Practice and Experience, 15(2), 2014.

[19] Louis Forite and Charlotte Hug. FASMM: Fast and Accessible Software Mi-
gration Method. In 2014 IEEE Eighth International Conference on Research
Challenges in Information Science, pages 1–12. IEEE, 2014.

[20] Christian Wagner. Model-Driven Software Migration: A Methodology.
Springer Fachmedien Wiesbaden, Wiesbaden, 2014.

[21] Martin Stigge and Wang Yi. Graph-based models for real-time workload: a
survey. Real-Time Systems, 51(5):602–636, 2015.

[22] F.Herrera, H. Posadas, P.Peñil, E.Villar, F.Ferrero, R.Valencia, and
G.Palermo. The COMPLEX methodology for UML/MARTE Modeling
and design space exploration of embedded systems. Journal of Systems
Architecture, 60(1):55–78, 2014.

[23] Kaj Hänninen, Jukka Mäki-Turja, Mikael Sjödin, Mats Lindberg, John Lund-
bäck, and Kurt-Lennart Lundbäck. The Rubus Component Model for Re-
source Constrained Real-Time Systems. In 3rd IEEE International Sympo-
sium on Industrial Embedded Systems, 2011.

[24] S. Mubeen, H. Lawson, J. Lundbäck, M. Gålnander, and K. L. Lundbäck.
Provisioning of predictable embedded software in the vehicle industry: The
rubus approach. In IEEE/ACM 4th International Workshop on Software
Engineering Research and Industrial Practice (SER&IP), 2017.

[25] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Int. J.
Softw. Tools Technol. Transf., 1(1-2):134–152, December 1997.

[26] Wilhelm Schäfer and Heike Wehrheim. Model-Driven Development with
Mechatronic UML, pages 533–554. Springer Berlin Heidelberg, 2010.

[27] The AUTOSAR Consortium. Autosar technical overview. In Version 4.3.,
May 2016. http://autosar.org.

117

http://autosar.org


[28] Anders Wall. Architectural Modeling and Analysis of Complex RealTime
Systems. PhD thesis, Mälardalen University, Västerås Sweden, 2003.

[29] L. Lo Bello, R. Mariani, S. Mubeen, and S. Saponara. Recent advances
and trends in on-board embedded and networked automotive systems. IEEE
Transactions on Industrial Informatics, 2019.

[30] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and
Thomas Nolte. End-to-end timing analysis of cause-effect chains in au-
tomotive embedded systems. Journal of Systems Architecture, 80:104 – 113,
2017.

[31] M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte. A generic
framework facilitating early analysis of data propagation delays in multi-rate
systems (invited paper). In 2017 IEEE 23rd International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA),
pages 1–11, 2017.

[32] Saad Mubeen, Thomas Nolte, Mikael Sjödin, John Lundbäck, and Kurt-
Lennart Lundbäck. Supporting timing analysis of vehicular embedded sys-
tems through the refinement of timing constraints. Software & Systems
Modeling, 18(1):39–69, Feb 2019.

[33] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: a time-triggered
language for embedded programming. Proceedings of the IEEE, 91(1):84–99,
2003.

[34] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software,
12(6):42–50, 1995.

[35] E. Andrianarison and J.D. Piques. SysML for embedded automotive systems:
a practical approach. In Conference on Embedded Real Time Software and
Systems. IEEE, 2010.

[36] Ulf Eliasson, Rogardt Heldal, Patrizio Pelliccione, and Jonn Lantz. Archi-
tecting in the Automotive Domain: Descriptive vs Prescriptive Architecture.
In 12th Working IEEE/IFIP Conference on Software Architecture, 2015.

[37] Johan Kraft, Anders Wall, and Holger Kienle. Trace recording for embedded
systems: Lessons learned from five industrial projects. In Proceedings
of the First International Conference on Runtime Verification (RV 2010).
Springer-Verlag (Lecture Notes in Computer Science), November 2010.

118



[38] Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns.
A review of priority assignment in real-time systems. Journal of Systems
Architecture, 65:64–82, 2016.

[39] Bjorn B. Brandenburg and Mahircan Gul. Global Scheduling Not Required:
Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-
Partitioned Reservations. In IEEE Real-Time Systems Symposium, 2016.

[40] Georg Franz Heinrich Macher, Andrea Höller, Eric Armengaud, and Chris-
tian Josef Kreiner. Automotive Embedded Software: Migration Challenges
to Multi-Core Computing Platforms. In Proceedings INDIN 2015, pages
110–118, 2015.

[41] Farhang Nemati, Moris Behnam, and Thomas Nolte. Efficiently migrating
real-time systems to multi-cores. In 2009 IEEE Conference on Emerging
Technologies & Factory Automation, pages 1–8.

[42] Sara Abbaspour Asadollah, Hans Hansson, Daniel Sundmark, and Sigrid
Eldh. Towards Classification of Concurrency Bugs Based on Observable
Properties. In 2015 IEEE/ACM 1st International Workshop on Complex
Faults and Failures in Large Software Systems (COUFLESS), pages 41–47.

[43] Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. Cheddar:
a flexible real time scheduling framework. In SIGAda, pages 1–8. ACM,
2004.

[44] C. Norstrom, A. Wall, and Wang Yi. Timed automata as task models for
event-driven systems. In Proceedings Sixth International Conference on
Real-Time Computing Systems and Applications, pages 182–189, 1999.

[45] Alessio Bucaioni, Saad Mubeen, Federico Ciccozzi, Antonio Cicchetti, and
Mikael Sjödin. Modelling multi-criticality vehicular software systems: evo-
lution of an industrial component model. International Journal on Software
and Systems Modeling, 19:1283–1302, June 2020.

[46] F. A. Bianchi, A. Margara, and M. Pezzè. A survey of recent trends in testing
concurrent software systems. IEEE Transactions on Software Engineering,
44(8):747–783, Aug 2018.

[47] The UML profile for MARTE: Modeling and analysis of real-time and em-
bedded systems. OMG Group, 2010.

119



[48] Barbara A Kitchenham and Shari L Pfleeger. Personal opinion surveys. In
Guide to Advanced Empirical Software Engineering, pages 63–92. Springer
London, London, 2008.

[49] Adesola Sola and Baines Tim. Developing and evaluating a methodology
for business process improvement. Business Process Management Journal,
11(1):37–46, 2005.



Chapter 8

Paper D: Fogification of
Industrial Robotic Systems:
Research Challenges

Shaik Mohammed Salman, Vaclav Struhar, Alessandro V. Papadopoulos, Moris
Behnam, Thomas Nolte.
In Proceedings of the Workshop on Fog Computing and the IoT.
(IoT-Fog ’19)

121



Abstract

To meet the demands of future automation systems, the architecture
of traditional control systems such as the industrial robotic systems needs
to evolve and new architectural paradigms need to be investigated. While
cloud-based platforms provide services such as computational resources
on demand, they do not address the requirements of real-time performance
expected by control applications. Fog computing is a promising new archi-
tectural paradigm that complements the cloud-based platform by addressing
its limitations. In this paper, we analyse the existing robot system archi-
tecture and propose a fog-based solution for industrial robotic systems that
addresses the needs of future automation systems. We also propose the use
of Time-Sensitive Networking (TSN) services for real-time communication
and OPC-UA for information modelling within this architecture. Addition-
ally, we discuss the main research challenges associated with the proposed
architecture.
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8.1 Introduction

Industrial robots have become an integral part of the industrial automation envi-
ronment with traditional application areas such as spot welding, spray painting
and machining [1]. Currently, each robot comes with a dedicated controller that
provides motion control, programming interfaces and physical interfaces for in-
tegrating field devices such as sensors and actuators via industrial networks [2].
The controller is designed to meet the real-time constraints demanded by motion
control algorithms as well as real-time requirements of industrial networks. These
controllers, however, have fairly limited computational resources restricting the
integration of complex functionality such as image processing, multi-robot motion
control and other complex applications [3]. Although multi-robot motion control
within a single controller is possible with solutions such as ABBs multimove func-
tionality, the number of robots that can be controlled is still limited. Additionally,
flexible production requirements of future automation systems impose demands
such as firmware updates and hardware maintenance without any production down-
time [4]. Meeting such requirements within the existing architecture is non trivial.
Supporting the required infrastructure for augmented reality based immersive
human-machine interaction concepts as shown by Paelke et al. [5] and Guhl et
al. [6] will also require significant computational capacity and communication
bandwidth. While increasing hardware capabilities within the controller can be a
presented as a solution, this only addresses some of the concerns, validating the
need to investigate cloud and fog-based architectures.

While cloud computing offers significant computational resources on demand,
it does not guarantee real-time performance as required by traditional control ap-
plications [7, 8, 9]. Fog computing [10], is a new paradigm that allows utilization
of computational resources near the edge of the network close to the source of the
data. It introduces an intermediate layer between the cloud and the end devices
that consists of a number of devices, called fog nodes, that are interconnected to
form a network and these devices offer their computational resources (e.g., CPU,
storage), for use by applications within this network. While the well established
cloud computing paradigm provides services ranging from collection of historical
data to big data analysis, fog computing complements the cloud functionality by
providing local data processing. This capability, along with real-time communica-
tion mechanisms such as TSN [11], enables the fog-based architecture to provide
predictable communication times.

Authors of [12, 13] have discussed fog-based solutions for general robotic
systems and highlighted the advantages of using fog-based architecture for such
applications. While Hao et al. [14] provided a generic software architecture for fog
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computing, Faragardi et al. [8] provided a time predictable framework for a smart
factory integrating the fog and cloud layers. Skarin et al. [15] developed a test
bed to study the feasibility of a fog-based approach for control applications, while
Pallasch et al. [16] and Mubeen et al. [17] showed the feasibility of using an edge
based solution for combining cloud and field devices. Vick et al. [18] presented
the concept of “Using OPC-UA for Distributed Industrial Robot Control”.

Based on the evidences provided by the above studies, in this paper, we pro-
pose the “Fogification” of industrial robotic system architecture to enhance the
capabilities of industrial robotic systems by taking advantage of the fog computing
paradigm. We use the term “Fogification” to define the integration of fog comput-
ing platform within industrial systems such that they benefit from the low-latency,
distributed fog based resources within the local networks as well as from the high
performance cloud computing environment. In order to highlight the advantages
of using the fog-based architecture for industrial robotic systems, we analyse the
existing architecture and identify its main limitations. Based on these limitations,
we introduce a fog-based architecture for industrial robots and we identify the
main research challenges associated with the proposed architecture.

8.2 Existing System Architecture

A single industrial robotic system typically consists of a mechanical unit called the
manipulator, a controller, and a graphical controller interface device (see Fig. 8.1).
The controller is the main processing unit that executes the control algorithms for
robot motion. It also provides mechanisms to program the robot motion and to
configure any additional behaviour required within the robot environment. The
controller also provides multiple communication interfaces for interaction with
fieldbus networks and the enterprise network including cloud based services.

In a multi-robot system, a number of robots are programmed together to ac-
complish a process application such as welding and painting. Here, the individual
controllers are connected to each other to form a local network. To ensure synchro-
nisation between different controllers, a fieldbus network and a PLC is utilised.

8.2.1 System Components

In this section, we give a brief overview of the different components of the current
robotic system as shown in Fig. 8.1.

Manipulator

The manipulator is the mechanical arm with varying degrees of freedom.
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Figure 8.1. Existing Industrial Robotic System Architecture.

Controller

The controller is responsible for controlling the manipulator motion and providing
required interfaces for interaction with the robot environment such as other robot
controllers, devices such as PLCs, conveyors and other sensors and actuators.

Teach Pendant Unit (TPU)

The TPU acts as the human machine interface device for the controller. It is
physically connected to the robot controller and can be used to manually move the
manipulator, to configure different parameters of the system and to visualise the
current state of the system via the device display.

Programmable Logic Controllers (PLC)

The PLCs are used for controlling the synchronisation and coordination between
different devices within the robot environment.
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Sensing Devices

Sensing devices are used to provide information about the robot environment.
These are connected to the controller via industrial networks or PLCs.

PC Software

The PC software provides visualisation, simulation, configuration and editing tools
for robot programming and monitoring.

Cloud

The controllers are capable of connecting to the cloud services where data from
the controller is stored and used for analysis. Currently, the cloud services are
mainly utilised for collecting system data and not for control.

8.2.2 Classification of Controller Functions

The functionality of the existing controller firmware can be classified under three
main categories, i.e, control, configuration and communication.

Control

The control functionality is responsible for path planning, trajectory generation
and low level control [19] and it requires real-time capabilities from the system.
Currently, the controller system provides real-time guarantees via a real-time
operating system.

Configuration

The configuration functionality allows the users to configure the system behaviour
such as defining the maximum speed of the robots and providing information about
the robot environment in terms of available sensors and the connected networks.
The configuration functionality does not require real-time guarantees and is usually
carried out offline while the system configuration is updated when the manipulators
are not in motion.

Communication

The communication functionality refers to user interaction features such as the
robot programming language, the interface for the teach pendant unit, communica-
tion with different field devices via fieldbus networks and connectivity to enterprise
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networks and the cloud services. These communication functions impose both
real-time requirements as well as non real-time requirements on the system. Con-
nectivity to fieldbus interfaces, for example, requires real-time guarantees while
the connectivity to enterprise networks can be non real-time.

8.2.3 Limitations

The existing architecture relies heavily on the controller component to achieve
the functional behaviour of the system. In addition to limited resources on the
controller, the existing architecture has certain limitations in terms of supporting
flexible production requirements of future automation systems [4]. Some of the
key limitations are discussed below.

L1: Computational Resources - The available computational resources within
the existing controllers are not sufficient for the implementation of complex func-
tionality. For example, computationally demanding tasks such as image processing
when using vision based sensors cannot be carried out within the controller due to
the limited resources.

L2: Fleet Management - In the existing setup, introducing new functionality
or improving performance of the existing system via over the air software updates
is limited since doing so requires production downtime. Also, controllers have
limited connectivity to networks outside the factory environment, restricting the
robot vendors from updating the controller firmware.

L3: Environment Interaction - Currently, the data from advanced sensors such
as cameras is not directly shared with all the controllers which are part of the same
environment. Normally, another computer is necessary to do the pre-processing.
This can introduce latencies and affect the ability to have comprehensive informa-
tion for better path planning and control.

L4: Hardware Dependency - The controller firmware is designed to make
optimal use of the available controller hardware. Replacing the hardware with
different hardware without significant changes to the controller firmware is non-
trivial.

L5: Connectivity - In order to support communication with various industrial
networks along with enterprise and cloud connectivity, the controllers need to
provide multiple communication interfaces. Maintaining multiple interfaces in-
creases the total system cost. Additionally, the current solutions do not allow for a
seamless communication of the mobile platform, and they are typically based on
wired, rather than wireless connection.
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8.3 Fog Based System Architecture

In the fog-based system architecture, we propose the utilisation of the fog layer as
the computational platform and TSN [11] as the communication mechanism for
both fog-to-fog communication as well as fog-to-field communication. To support
a standard mechanism for information exchange, we propose the use of OPC-UA
data modelling standards [18]. We describe the key components of the architecture
in Fig. 8.2.

TSN
Switch

TPU

Fog Node Fog Node Fog Node

Fog Layer
Robot Application Manager

Cloud

Robot
Drive

Manipulator
Arm

Robot
Drive

Manipulator
Arm

Sensors Sensors

Figure 8.2. Proposed fog based architecture for Industrial Robotic System.

8.3.1 Computational Platform

In the fog-based system architecture, the controller functionality is provided by
a fog-based computational platform. This platform will provide the required
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computing capacity to execute the system functions. Fig. 8.2 shows the fog-based
system architecture. Here, the controller component is replaced by the robot drive
system and the entire controller functionality is moved to the fog layer. Replacing
the individual controllers with a fog-based platform provides multiple advantages,
such as compute capacity on demand and additional storage. This addresses
limitation L1. The robot application manager, as shown in Fig. 2, acts as an
orchestrator that distributes the controller functionality within the fog layer and
manages the firmware updates by interacting with the cloud layer. It stores the
updates in one of the fog nodes and applies these changes to the system when it is
idle, addressing the limitation L2.

8.3.2 Communication Interfaces

System components such as the manipulator and the TPU, which are normally
physically connected to individual controllers, will form a local network with the
fog platform via TSN [11]. Also, field level sensors that are normally interfaced via
fieldbus networks and connected to individual controllers will now be connected via
the TSN network to the fog platform. It can also be possible to integrate the fieldbus
network to the fog platform via gateways. The information from such sensors
can now be shared by different applications running on the platform for improved
system performance, addressing the limitation L3. Using OPC-UA standards
for data modelling will provide a standard mechanism for information exchange,
replacing the multiple communication protocols currently used, addressing a part
of the limitation L5.

8.3.3 Software Deployment

To execute the controller functions in the fog layer, the application needs to be
designed such that it is hardware agnostic, addressing the limitation L4. In the
new architecture, we propose the use of a service oriented approach to meet
the functional requirements [18]. For example, the robot program interpreter
can be deployed as an independent service that can execute on one of the fog
nodes. The trajectory generator, waiting for the input from the robot program
interpreter, executes on another node within the network, while the low level
control component is executing on yet another node. The real-time communication
interface, responsible for data exchange with the sensors and actuators, can run
as a background service, which can be subscribed to by other services for data
manipulation and control activities. An important assumption we make here is
that the real-time requirements of all the above components can be met.
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8.4 Research Challenges

Introduction of fog computing in the proposed industrial system architecture brings
a myriad of research challenges that needs to be addressed. The need to meet the
extra-functional properties of the system, such as safety, security [20], availability
and reliability [11], makes the deployment of fog computing complex and needs
many considerations.

In this section, we identify some of the research challenges that must be
addressed in order to build the proposed industrial robot system.

8.4.1 Orchestration and Inner Fog Architecture

The fog layer is a distributed environment consisting of many heterogeneous fog
nodes offering their computational capacity. For an efficient use of the resources,
a fog orchestrator needs to be defined. Fog orchestration [21] is a key component
that partitions the workload between fog nodes, keeps track of available resources,
cooperates with the cloud and manages unexpected situations that occur in the
fog layer. Choosing the right orchestration techniques is crucial as it affects
the behavior of the entire system. Here, the challenge is to find an appropriate
architecture, in a holistic way, that will meet all the functional/extra-functional
requirements of the presented industrial system.

Skarlat et al. [22] proposed a hierarchical approach where fog orchestrator
manages a fog colony (logical unit of fog devices) and divides work among this
fog colony, neighbouring colonies or cloud. Whereas in [23], the fog orchestrator
works only as a workload balancer that couples a fog node with a device requiring
computational resources. Nodal collaboration [24] defines how fog nodes commu-
nicate to each other. It provides two basic models: peer-to-peer, where each node
can directly communicate to each other, and the client-server model, where there
is a hierarchy of servers providing services and client nodes consuming them.

8.4.2 Real-Time Guarantees

The proposed system must meet strict timing constraints and these constraints are
valid for both the computation time and data transmission time in the network.
Therefore, we need to find appropriate scheduling and analysis mechanisms for
the conjunction of both the computational and the transmission part. The data
transmission time can be bounded by use of TSN. Pop et al. [11] proposes the use
of TSN in fog Computing, whereas in the paper [25], optimization strategies for
TSN are shown.
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Additionally, the problem of variable timing constraints during the operational
process needs to be tackled. For example, the robots may require control instruc-
tions at changeable rates, i.e., complex small-grained movements or movements
at high speed demand instructions at high rates, while slow speed motions need
lower pace of instructions from the Trajectory Generator.

8.4.3 Resource Isolation and Virtualization

In the fog layer, the concurrently running applications may influence each other,
especially during high utilization. It is given by the fact that the fog nodes are
realised using common hardware, utilizing common resources as system buses,
CPUs and memory. A proper mechanism that ensures that a number of concurrently
running application on a single fog node do not interfere with each other in an
unpredictable manner must be designed. Additionally, the applications must finish
the computation within a given time and improper isolation of resources may
introduce unpredictable delays and affect the timing requirements. Moreover,
failure of an application must not lead to failure of other applications running on a
single node.

8.4.4 Resource Estimation and Workload Optimization

To ensure real-time performance, a proper analysis of the system must be done to
estimate the resources necessary for an application. Also, the system workload
can vary significantly depending on the applications running at any given time.
Appropriate strategies to deal with these situations must be developed. One of the
solutions can be dynamical provisioning of fog nodes [26], where, if the workload
is high (or is predicted to be high), additional fog nodes are started up.

8.4.5 Monitoring and Optimization

The architectural transition from a dedicated controller to the whole distributed
layer of fog nodes introduces additional complexities to the robot control. There
may be errors in the system due to faulty resource allocation, faults in communica-
tion between the robots and the fog, faults in communication between fog nodes
and in virtualization, etc. Thus, the whole fog layer needs thorough monitoring to
enable traceability of functional/non-functional properties of the system to address
the errors due to these faults. Additionally, monitoring is a key component to
enable optimization and dynamic reconfiguration of the fog layer.
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8.4.6 Safety

The system should identify and recover from unexpected states caused by failure
of fog nodes (hardware or software) or communication links. Employing a single
orchestrating node that manages the whole fog network introduces a single point
of failure that may paralyze the whole fog layer and affect the safety of the system.
Techniques to address such scenarios need to be investigated.

8.4.7 Security

The use of fog computing allows centralized updating and deploying applications
in the fog environment. An attacker can remotely take over the manufacturing
process and make the system unsafe. This may be a potential security risk that must
be taken into account. Therefore, a proper access control and intrusion detection
mechanism must be implemented at different layers of the architecture.

8.5 Conclusion and Future Work

The traditional robot system architectures need to evolve to a new architectural
paradigm to meet the demands of flexible production environments. The proposed
fog-based system architecture addresses such demands while introducing new
research challenges that need to be addressed. In our future work, we intend to
address the research challenges associated with the fog-based architecture.
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Table 8.1. Survey questionnaire and the mapping between the questions and the different
stages of the methodology.

No. Methodology Stage/ Purpose Question
1 Participant information Before you proceed, please take the time to read the paper describing the methodology.
2 Participant information Name of the organization:
3 Participant Relevance Does your application have real-time components?
4 Participant Relevance Is your application designed to run on multi-core platforms?
5 Participant Relevance Have you in the past, migrated your application to a multi-core platform?
6 Participant Relevance Are you considering migrating the application to a multi-core platform?
7 Exploratory Did you follow any specific methodology or guidelines to migrate the application to a multi-core platform?
8 Exploratory Will you recommend the existing approach to others?
9 Exploratory If you’d like to provide more information about the used methodology, please do so here.

10 Problem relevance
Select the preferred option :
a) I prefer to redesign and redevelop the application from scratch for a multi-core platform.
b) I prefer to redesign but also reuse the existing code for a multi-core platform.

11 Architecture Abstraction
and Representation

Can your application be described with timing properties such as
“worst case execution times”, “period”, “deadlines”?

12 Architecture Recovery
(runtime analysis)

Is it possible to identify a particular build of the application that can be used to recover the
timing requirements of the application and can such timing requirements be used to create
a model of the application?

13 Architecture recovery
(documentation) Is the design of your application documented?

14 Architecture recovery
(documentation) Does the application design documentation contain timing properties?

15 Architecture recovery
(documentation)

The behaviour of your application can be:( choose one)
a) accurately inferred from the design documentation
b) cannot be accurately inferred from the design documentation

16 Architecture Recovery
(runtime analysis) Does your application provide diagnostic logs of runtime behaviour?

17 Architecture Recovery
(runtime analysis) The code instrumentation : a) is fully reliable. b) may not be fully reliable.

18 Architecture Recovery
(runtime analysis) Does your application have multiple configurations?

19 Architecture Recovery
(runtime analysis) Does the runtime behaviour of the application depend on the configuration?

20 Architecture Recovery
(runtime analysis) Do you test all possible configurations of the applications?

21 Architecture Recovery
(runtime analysis) Which configuration do you test

22 Architecture Transformation
(Ranking of solutions)

Do you have any existing process/guidelines in place to evaluate and choose between
different solutions that may be specific to multi-core platforms?

23 Architecture Transformation
(Ranking of solutions)

Is it possible to define measurable parameters that will suit your application’s
timing requirements to choose one solution over the other?

24 Architecture Transformation
(Ranking of solutions)

Is it possible to prioritize the measurable parameters that will suit your
application requirements to choose one solution over the other?

25 Verification Migration Does your application have a verification and validation process in place for checking functional correctness?
26 Verification Migration Will you reuse the existing tests to verify the behaviour on multi-core platforms?
27 Feasibility Feasibility: Can the methodology described be followed?
28 Feasibility Please briefly describe the reason behind your answer here:
29 Usability Usability: Is the methodology workable? Are the steps and tools easy to use and apply?
30 Usability Please briefly describe the reason behind your answer here:
31 Usefulness Usefulness: Is the methodology worth following? Does the methodology produce results

that the business will find helpful?
32 Usefulness Please briefly describe the reason behind your answer here:
33 Overall comments Which part of the methodology will you like to improve? (you can choose multiple options)
34 Overall comments Please provide any suggestions and improvements you want to see in the methodology here:
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