
—

—

Functional programming in the ”real” world
Stefan Karlsson

—

Agenda

• What is the image of FP in industry, in my experience

• Why is FP relevant for the industry, in my experience

• Strategies and learnings from promoting FP in industry

—

Goal

• To assure you that FP is of high importance

• To inspire you to become a champion for FP

—

Audience

• What is your experience?

• 220x15x8 = 26400h (excluding my spare time coding)

• Interrupt with questions if anything is unclear!

—

Pre-university era

• Exposed to computing via C64/128 and NES (~1986)

• Grown ups left us alone, they had no experience

• Amiga (~1992)

• Entered my first program in Easy AMOS

• Apple

• Basic

• PC – 486DX 33Mhz (~1995)

• Pascal

• C++

—

Education and Professional experience

• M.Sc. in Computer Science 2004

• M.Sc. In Computer Engineering 2005 (Civilingenjör)

• Software engineer at ABB 2006-2009

– System 800xA, DCS

– Lived and worked in Japan for 6 months

• Software engineer at Packsize 2009-2014

– Machine manufacturer for packaging machines

• Senior Software engineer at ABB 2014-current

– Services around System 800xA such as Mobile applications

• ARRAY Industrial PhD Student 2019-current

—

—

My road to functional programming

• Took a course in Haskell in the early 200X

• Then.. Nothing

• In 2011-2012 I felt a “peak” with C#

• The same problems surfaced over and over..

• Started to look around for other languages

• Tried several languages (Python, Scala, F#, etc.)

• Found Clojure

• Clojure (FP it turns out) addressed many of the problems I had observed in industry

• Distributed stateful objects with uncontrolled mutations

• Today, not using FP is painful..

• (Notice how many FP features have been added to C#/Java)

2/20/2020 8

—

Many of the early programming language trade offs are not true any longer

• Immutability have a cost

• If all you have is 4096KB of memory, then update-in-place might be the only choice

• Many languages are based on premises true in the 1960-1970

• Memory was small and expensive

• Disk was small and expensive

• CPUs were single threaded

• Today, developers are more expensive then hardware

• If it takes me 2x longer to write code that express 10x more it is a win

• A common case in Clojure is a 10x reduction in LOC compared to a Java solution

2/20/2020 9

—

Simple Made Easy – Rich Hickey

• Highly influential talk for me on my road to FP

• Mentions many of the pains I had experienced as a practitioner in industry.

• https://www.infoq.com/presentations/Simple-Made-Easy-QCon-London-2012/

2/20/2020 10

—

A common industry attitude

“ Functional programing is nice for toy problems, but you can’t make real things with

it”

2/20/2020 11

—

How functional programming was (is?) taught at

university

• Mathy type of exercises

• No projects of building ”real” things

• So the impression that FP is for academic exercises persists

• Out of 5 years in CS education at the university I did 5p (7,5p) FP out of 200p

(300p)

• Hard for students to see the value with such low exposure

• “You build real things with real languages like C/C++/C#/Java”

—

Start building “real stuff”

• CRUD Web Application

• UI front end

• Compiler

• Etc.

2/20/2020 13

—

I practiced Clojure by doing this

—

Some high-profile industry users

2/20/2020 15

—

Stackoverflow survey 2019

—

My theory of why experienced programmers are drawn to

FP

—

Mutable State

• It will make any non-trivial application harder to reason about

• Generations of programmers’ effort wasted..

• The basis of logic depends on things not changing

• Debugging concurrent systems with mutable state is extremely hard

• In my experience, it do not scale!

• Immutability and data driven pure functions do

—

SICP - ”The wizard book”

Uses Scheme

”If programming was a religion, this would be the holy

book” - Stefan Karlsson

https://mitpress.mit.edu/sites/default/files/sicp/full-

text/book/book.html

—

WHY DIDN’T ANYONE TELL ME!

Basis for logic!

—

Again..

—

—

Rich Hickey fan club

https://github.com/tallesl/Rich-Hickey-fanclub

https://github.com/tallesl/Rich-Hickey-fanclub

—

State again..

Global variables taught as bad

– But Fields in OO are ok for some reason..

– What's the difference?

Guard your state with warning signs

– Make it explicit!

– Transactions for all state not just DB!

– FP solves this with immutability by default

—

But we need some state to make interesting programs

2/20/2020 25

Datomic

There are immutable databases!

—

User interface – great gateway to FP

2/20/2020 26

The power of immutability, a ClojureScript wrapper around React was faster than React!

—

Functional UI

2/20/2020 27

UI (Render M’) Business Logic (F,

M)

User Action (A)

New Model (M’)

M’ = F(M, A)

The UI renders the new model which is produced by applying the business logic function with the current model state and user action as input

Functional core, imperative shell
• Keep state at the edge

• Use the same FP principles on all levels of the system

• Simplifies every aspect of development

DBWS

DB

WS

Pure functional coreState

Everything is dataData is transacted

State is distributed everywhere

—

The FP mutability trap

• F# and Scala mutable objects “trap”

• Tutorials from people with an OO mindset will just change the syntax not the

principles

• You get “Java in Scala”

2/20/2020 29

—

Real reuse is the function not the object

”I think the lack of reusability comes in object-oriented languages, not functional languages. Because the problem with object-oriented languages is

they’ve got all this implicit environment that they carry around with them. You wanted a banana but what you got was a gorilla holding the

banana and the entire jungle.

If you have referentially transparent code, if you have pure functions — all the data comes in its input arguments and everything goes out and

leave no state behind — it’s incredibly reusable.”

- Joe Armstrong

2/20/2020 30

—

Joe Armstrong

• “Making reliable distributed systems in the presence of software errors”

• Great read

• Inventor of Erlang

• Functional and dynamically typed language aimed for reliability

2/20/2020 31

—

A political battle not a technical one

• I have built successful services with Clojure

• Had to throw it away due to change in management..

• Built web services with Clojure

• Had to throw them away due to project management decision..

• Not once have there been any technical argument against FP

2/20/2020 32

—

Industry do not always realize what it needs

“If I had asked people what they wanted, they would have said faster horses.”

- Henry Ford

• Industry usually hire for tools/languages

• ”We want C#/Java programmers, because that is what we use”

• Instead, principles would be of more value

• “We want developers who can build high quality systems”

2/20/2020 33

—

Apply FP lessons

• Apply the lessons from FP even if you are forced to use other languages

• Pure functions/methods can be applied in any language

• Immutability can be applied in any language

• But it requires much more discipline when the language do not help you

2/20/2020 34

—

Another way in

• Tooling is a way to show the benefits of FP

• Do not effect production

• Tests

– Property-based testing is strong in FP languages

– Check out QuickCheck (FSCheck in F#)

– John Hughes et al. (google scholar)

– My paper : “QuickREST: Property-based Test Generation of OpenAPI-Described RESTful APIs”

• Property-based testing in a functional language on real systems

• https://arxiv.org/abs/1912.09686

2/20/2020 35

—

Leverage the runtime already adopted

• F# runs on the CLR

• Clojure runs on the JVM/CLR/js

• Libraries can be reused

• The organization do not need to support another runtime

2/20/2020 36

—

Learn it good and find allies

• You need to be able to answer ANY FP question

• “What about this? What about that?”

• Try and find a coworker that is a learner

• I have been asked a 1000 times about the memory cost of immutability..

2/20/2020 37

—

—

Be a champion of FP

"First they ignore you, then they laugh at you, then they fight you, then you win”

- Gandhi

2/20/2020 39

—

Clojure

• Clojure, invented by Rich Hickey in 2007

• Since you know F# it might be interesting to compare with Clojure

• Dynamically typed, immutable, data driven LISP

• I choose Clojure based on rationality and experience not

“Pop-culture”

• https://clojure.org/

• https://blog.cleancoder.com/uncle-bob/2019/08/22/WhyClojure.html

https://clojure.org/
https://blog.cleancoder.com/uncle-bob/2019/08/22/WhyClojure.html

—

@zteefo

stefan.l.karlsson@mdh.se

https://quality-developer.com/

https://github.com/zclj

Functional Core – Imperative Edge – Never stop learning

The rest is details

mailto:stefan.l.karlsson@mdh.se
https://quality-developer.com/

