
List Functions, and Higher-Order Functions

Björn Lisper
Dept. of Computer Science and Engineering

Mälardalen University

bjorn.lisper@mdh.se
http://www.idt.mdh.se/˜blr/

List Functions, and Higher-Order Functions (revised 2013-11-27)

List Functions

We have seen some list functions already

There are some important ones left

We’ll define List.append (@) and List.zip here

List Functions, and Higher-Order Functions (revised 2013-11-27) 1

List.append

(We’ve seen it in use before)

let rec (@) xs ys =
match xs with
| [] -> ys
| x::xs -> x :: (xs @ ys)

Thus,

[1;2] @ [3;4;5] = 1 :: 2 :: [] @ 3 :: 4 :: 5 :: []
=> 1 :: (2 :: [] @ 3 :: 4 :: 5 :: [])
=> 1 :: 2 :: ([] @ 3 :: 4 :: 5 :: [])
=> 1 :: 2 :: 3 :: 4 :: 5 :: []
= [1;2;3;4;5]

Note that List.append takes time proportional to length of first argument

List Functions, and Higher-Order Functions (revised 2013-11-27) 2

List.zip

List.zip takes two lists and returns a list of pairs of their respective
elements (like closing a zipper):

zip : ’a list -> ’b list -> (’a * ’b) list
let rec zip l1 l2 =

match (l1,l2) with
| (x::xs,y::ys) -> (x,y) :: zip xs ys
| ([],[]) -> []
| _ -> failwith "Lists have different length"

List Functions, and Higher-Order Functions (revised 2013-11-27) 3

Thus,

List.zip [1;2;3] ["allan";"tar";"kakan"] =>
[(1,"allan");(2,"tar");(3,"kakan")]

So we can for instance use List.zip to put a number on each element in a
list

List.zip requires the argument lists to be of equal length

Exercise: define a version that accepts lists of different length! Let the
resulting list be as long as the shortest argument list

List Functions, and Higher-Order Functions (revised 2013-11-27) 4

Higher-Order Functions

F# is a higher order language

This means that functions are data just as data of any other “ordinary” type

They can be stored in data structures, passed as arguments, and returned
as function values

Functions as arguments provides a way to parameterize function definitions,
where common computational structure is “factored out”

Functions that take functions as arguments are called higher-order functions

Common computational patterns can be captured as higher order functions

We’ll show some important examples here

List Functions, and Higher-Order Functions (revised 2013-11-27) 5

Three Common Higher-Order Functions over Lists

• map : apply a function to all elements in a list

• filter : remove all elements not satisyfing a given condition

• fold (several versions): combine all elements using a function with two
arguments (like binary operators)

These functions capture common computation patterns

They allow these patterns to be reused

All functional languages have them

Can also be defined for other data types, like arrays and trees

List Functions, and Higher-Order Functions (revised 2013-11-27) 6

A First Example: List.map

A common pattern is to apply a function to each element in a list

An example: a function that adds one to each element in a list of integers:

inclist : int list -> int list
let rec inclist l =

match l with
| [] -> []
| x::xs -> x + 1 :: inclist xs

inclist [2;1;3;4] => [3;2;4;5]

List Functions, and Higher-Order Functions (revised 2013-11-27) 7

Computation pattern captured by a higher-order function List.map :

let rec map f l =
match l with
| [] -> []
| x::xs -> f x :: map f xs

List.map applies an arbitrary function f to the elements in a list

List.map : (’a -> ’b) -> ’a list -> ’b list

Note that the type of List.map is polymorphic. This is common for
higher-order functions

We can now define inclist through List.map instead:

let inclist l = let inc n = n + 1 in map inc l

List Functions, and Higher-Order Functions (revised 2013-11-27) 8

A Second Example: filter

List.filter removes all elements from a list that do not satisfy a given
predicate:

filter : (’a -> bool) -> ’a list -> ’a list
let rec filter p l =

match l with
| [] -> []
| x::xs -> if p x then x :: filter p xs

else filter p xs

For instance: if even returns true for exactly the even numbers, then

filter even [0;1;2;3;4;5] => [0;2;4]

List Functions, and Higher-Order Functions (revised 2013-11-27) 9

Some Syntax: Guarded Patterns

Here is another way to define List.filter in F#:

let rec filter p l =
match l with
| [] -> []
| x::xs when p x -> x :: filter p xs
| x::xs -> filter p xs

This definition uses a guard : a condition that “filters out” a certain case

The keyword “when” specifies a guard

pattern when guard -> expr will return expr when the pattern is
matched and the guard becomes true

(Guards are just syntactic sugar)

List Functions, and Higher-Order Functions (revised 2013-11-27) 10

Folds

Rather than applying a function to each single member of a list, we might
want to apply a function with two arguments successively to all elements

An instance of this is summing all numbers in a numeric list, recall
List.sum :

let rec sum l =
match l with
| [] -> 0
| x::xs -> x + sum xs

Applies + successively to all elements, “collecting” them into their sum

List Functions, and Higher-Order Functions (revised 2013-11-27) 11

Now consider multiplying the numbers in a list:

let rec product l =
match l with
| [] -> 1
| x::xs -> x * product xs

Or, ANDing together a list of booleans:

let rec all l =
match l with
| [] -> true
| x::xs -> x && all xs

There’s something in common here!

List Functions, and Higher-Order Functions (revised 2013-11-27) 12

All these functions are instances of List.foldBack :

foldBack : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b
let rec foldBack f l init =

match l with
| [] -> init
| x::xs -> f x (foldBack f xs init)

We can now define:

let sum xs = List.foldBack (+) xs 0
let product xs = List.foldBack (*) xs 1
let all xs = List.foldBack (&&) xs true
let some xs = List.foldBack (||) xs false

Can you think of any other functions that can be defined with
List.foldBack ? (an example on next slide)

List Functions, and Higher-Order Functions (revised 2013-11-27) 13

Remember words2string ?

let rec words2string ws =
match ws with
| [] -> ""
| w :: rest -> w + " " + words2string rest

words2string : string list -> string

How define it with List.foldBack ?

(Solution next slide)

List Functions, and Higher-Order Functions (revised 2013-11-27) 14

Define

let conc_words w1 w2 = w1 + " " + w2
conc_words : string -> string -> string

conc_words can now be used as a “binary operator” on strings

Now, we can define

let words2string ws =
let conc_words w1 w2 = w1 + " " + w2
in List.foldBack conc_words ws ""

(With nameless functions we could have avoided the explicit declaration of
conc_words . More about this later)

List Functions, and Higher-Order Functions (revised 2013-11-27) 15

The List module actually contains two folds:

List.foldBack

List.fold , defined as:

fold : (’b -> ’a -> ’b) -> ’b -> ’a list -> ’b
let rec fold f init l =

match l with
| [] -> init
| x::xs -> fold f (f init x) xs

List.foldBack = “fold from the right”

List.fold = “fold from the left”

Note the accumulating argument for List.fold , where the “sum” is
collected

List Functions, and Higher-Order Functions (revised 2013-11-27) 16

Why two Folds?

Why two folds? Sometimes, one can be more efficient than the other

Also, they have slightly different types, there are cases where one will work
but not the other

However, under some conditions they will compute the same answer (more
on this later)

List Functions, and Higher-Order Functions (revised 2013-11-27) 17

How do the Folds Work?

Let’s compare the evaluation of List.foldBack (+) [1;2;3] 0 and
List.fold (+) 0 [1;2;3] :

List.foldBack (+) [1;2;3] 0 => 1 + List.foldBack (+) [2;3] 0
=> 1 + (2 + List.foldBack (+) [3] 0)
=> 1 + (2 + (3 + List.foldBack (+) [] 0))
=> 1 + (2 + (3 + 0))
=> 6

List.fold (+) 0 [1;2;3] => List.fold (+) (0 + 1) [2;3]
=> List.fold (+) ((0 + 1) + 2) [3]
=> List.fold (+) (((0 + 1) + 2) + 3) []
=> (((0+ 1) + 2) + 3)
=> 6

List Functions, and Higher-Order Functions (revised 2013-11-27) 18

Note how List.fold and List.foldBack build the expression tree in
different ways:

0 1

+ 2

+ 3

+
+

+

2

0

+

3

1

fold foldBack

Since + is associative these give the same result. The same holds for * , &&,
|| .

If the operator is not associative, then List.fold and List.foldBack
can yield different results

List Functions, and Higher-Order Functions (revised 2013-11-27) 19

Efficiency of List.fold vs. List.foldBack

For operators on atomic types, such as + (int , float , etc.), and && (bool),
List.fold is more efficient than List.foldBack

Reason: since F# is call-by-value, the accumulating argument of
List.fold will be evaluated for each new call

Therefore, the expression tree never grows higher than one level

Less stack memory is needed to hold the expression tree

Also, List.fold is tail recursive: a good compiler can compile tail
recursive functions into loops

List Functions, and Higher-Order Functions (revised 2013-11-27) 20

Thus, sum, product , etc. are better defined as:

let sum xs = List.fold (+) 0 xs
let product xs = List.fold (*) 1 xs
let all xs = List.fold (&&) true xs
let some xs = List.fold (||) false xs

List Functions, and Higher-Order Functions (revised 2013-11-27) 21

