
Imperative programming in F#

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Imperative programming in F# (revised 2020-02-12)

F# is a Multiparadigm Programming Language

So far we have used F# mainly as a functional language

But F# is really a multi-paradigm language

It supports both functional, imperative, and object-oriented programming

Although the focus of this course is functional programming, we will spend
some time on the imperative and object-oriented parts in F#

Imperative programming in F# (revised 2020-02-12) 1

F# as an Imperative Language

We have already seen some limited side-effects (printf, file I/O), and
sequencing

In addition, F# has:

• mutable data (that can be overwritten),

• imperative control structures (loops, conditionals), and

• iteration over sequences, lists, and arrays (similar to loops)

Imperative programming in F# (revised 2020-02-12) 2

Mutable Variables

F# has mutable variables (sometimes called locations)

Their contents can be changed

Declared with keyword mutable:

> let mutable x = 5;;

val mutable x : int = 5

Can be of any type:

> let mutable f = fun x -> x + 1;;

val mutable f : (int -> int)

Imperative programming in F# (revised 2020-02-12) 3

Updating Mutable Variables

Update (assignment) is done using the “<-” operator:

> let mutable x = 5;;

val mutable x : int = 5

> x <- x + 1;;

val it : unit = ()

> x;;

val it : int = 6

Imperative programming in F# (revised 2020-02-12) 4

Using the Values of Mutable Variables

The current value of a mutable variable is returned by its name. Thus, “x”

refers to the current value of x. This has some consequences. An example:

> let mutable x = 5;;

val mutable x : int = 5

> let y = [x;x];;

val y : int list = [5; 5]

> x <- x + 1;;

val it : unit = ()

> y;;

val it : int list = [5; 5]

So the list y is not changed when x is updated. This is because the current
value of x was used when creating y. y is an ordinary, immutable list

Imperative programming in F# (revised 2020-02-12) 5

Mutable Records

We have already seen (immutable) records

Like variables, record fields can be declared mutable meaning that they

can be updated

An example: an account record, having three fields: an account holder field
(string, immutable), an account number field (int, immutable), an amount

field (int, mutable), and a field counting the number of transactions (ditto)

(See next page)

Imperative programming in F# (revised 2020-02-12) 6

type Account =

{ owner : string;

number : int;

mutable amount : int;

mutable no_of_trans : int }

A function to initialize an account record:

let account_init own no =

{ owner = own;

number = no;

amount = 0;

no_of_trans = 0 }

Imperative programming in F# (revised 2020-02-12) 7

A mutable field can be updated with the “<-” operator:

account.no_of_trans <- account.no_of_trans + 1

Example: a function that adds an amount to an account:

let add_amount account money =

account.amount <- account.amount + money

account.no_of_trans <- account.no_of_trans + 1

Imperative programming in F# (revised 2020-02-12) 8

Mutable Reference Cells

They provide a third way to have mutable data in F#

Main difference to mutable variables is that the reference cells themselves

can be referenced, not just the values held in them

Type ’a ref, meaning “a cell that holds a value of type ’a”. Initialized with

function ref : ’a -> ’a ref:

let r = ref 5

Creates a reference cell r : int ref that holds the value 5

r is the cell itself. Its contents can be accessed with the “!” prefix operator:

!r =⇒ 5

Note the difference between r (the cell), and !r (the contents of the cell)

Imperative programming in F# (revised 2020-02-12) 9

Updating Reference Cells

The binary infix operator (:=) : ’a ref -> ’a -> unit is used to
update the contents of a reference cell

Creating/initializing, accessing, and updating a reference cell:

let r = ref 5

printf "Contents of r: %d\n" !r

r := !r - 2

printf "New contents of r: %d\n" !r

Resulting printout:

Contents of r: 5

New contents of r: 3

Imperative programming in F# (revised 2020-02-12) 10

Defining Mutable Reference Cells

Mutable reference cells can be defined in F# itself

They are simply records with one mutable field “contents”:

type ref<’a> = { mutable contents: ’a }

let (!) r = r.contents

let (:=) r v = r.contents <- v

let ref v = { contents = v }

Imperative programming in F# (revised 2020-02-12) 11

Handling Reference Cells

Reference cells can be stored in data structures, and passed around. They
can be accessed using the ordinary operations on data structures:

> let r = [ref 5;ref 3];;

val r : int ref list = [{contents = 5;}; {contents = 3;}]

> !(List.head r);;

val it : int = 5

> List.head r := !(List.head r) + 2;;

val it : unit = ()

> r;;

val it : int ref list = [{contents = 7;}; {contents = 3;}]

Imperative programming in F# (revised 2020-02-12) 12

Updating Reference Cells in Data Structures

Updating the contents of a reference cell will affect data structures where it

is stored:

> let z = ref 5;;

val z : int ref = {contents = 5;};

> let r = [z;z];;

val r : int ref list = [{contents = 5;}; {contents = 5;}]

> z := !z + 1;;

val it : unit = ()

> r;;

val it : int ref list = [{contents = 6;}; {contents = 6;}]

Compare this with the mutable variable example! There, the value of x was
stored in the list. Here, it is the cell z that is stored

Imperative programming in F# (revised 2020-02-12) 13

Why Two Types of Mutable Data?

Why are there both mutable variables and ref variables in F#?

They are stored differently. Mutable variables are stored on the stack, ref
variables on the heap

This implies some restrictions on the use of mutable variables

Imperative programming in F# (revised 2020-02-12) 14

An Example that does not Work

A good way to use mutable data is to make them local to a function. Then
the side-effects will be local, and the function is still pure. Alas, mutable

variables cannot be used like this:

let f(x) =

let mutable y = 0

in let rec g(z) = if z = 0 then y else y <- y + 2;g(z-1)

in g(x)

/localhome/bjorn/unison/work/GRU/F#/test/locvar.fs(5,21): error

FS0407: The mutable variable ’y’ is used in an invalid way.

Mutable variables cannot be captured by closures. Consider

eliminating this use of mutation or using a heap-allocated

mutable reference cell via ’ref’ and ’!’.

Imperative programming in F# (revised 2020-02-12) 15

Using a ref Variable Instead

A ref variable works:

let f(x) =

let y = ref 0

in let rec g(z) = if z = 0 then !y else y := !y + 2;g(z-1)

in g(x)

val f : int -> int

Imperative programming in F# (revised 2020-02-12) 16

Comparing Assignments in F# and C/C#/Java

In C/C#/Java:

x = x + y/z - 17

In F#, with mutable variables:

x <- x + y/z - 17

Very similar to C/C#/Java

In F#, with reference cells:

x := !x + !y/!z - 17

The main difference is that F# makes a difference between the cell itself (x)
and the value it contains (!x)

Imperative programming in F# (revised 2020-02-12) 17

Arrays

Arrays are mutable in F#

Array elements can be updated similarly to mutable record fields:

let a = [|1; 3; 5|]

a.[1] <- 7 + a.[1]

Now, a = [|1; 10; 5|]

Imperative programming in F# (revised 2020-02-12) 18

Control Structures in F#

F# has conditionals and loops

The conditional statement is just the usual if-then-else:

if b then s1 else s2

It first evaluates b, then s1 or s2 depending on the outcome of b

If side effects are added, then this is precisely how an imperative
if-then-else should work

If s : unit, then

if b then s

is allowed, and is then equivalent to

if b then s else ()

Imperative programming in F# (revised 2020-02-12) 19

While Loops

F# has a quite conventional while loop construct:

while b do s

s must have type unit, and while b do s then also has type unit

An example:

let x = ref 3

while !x > 0 do

printf "x=%d\n" !x

x := !x - 1

Resulting printout:
x=3

x=2

x=1

Imperative programming in F# (revised 2020-02-12) 20

Simple For Loops

The simplest kind of for loop:

for v = start to stop do s

for v = start downto stop do s

The first form increments v by 1, the second decrements it by 1

Note that v cannot be updated by the code inside the loop

let blahonga n =

for i = 1 to n do printf "Blahonga!\n"

Imperative programming in F# (revised 2020-02-12) 21

Iterated For Loops

These loops are iterated over the elements of a sequence (or list, or array).

They have this general format:

for pat in sequence do s

The pattern pat is matched to each element in sequence, and s is

executed for each matching in the order of the sequence

Imperative programming in F# (revised 2020-02-12) 22

Simple For Loops as Iterated For Loops

The simplest patterns are variables, and the simplest sequences are range
expressions. With them, we can easily recreate simple for loops:

for i in 1 .. 10 do printf "Blahonga no. %d!\n" i

for i in 10 .. (-1) .. 1 do printf "Blahonga no. %d!\n" i

Also with non-unit stride:

for i in 1 .. 2 .. 10 do printf "Blahonga no. %d!\n" i

for i in 10 .. (-3) .. 1 do printf "Blahonga no. %d!\n" i

Imperative programming in F# (revised 2020-02-12) 23

More General Iterated Loops

More general use of patterns and sequences (lists, arrays) to iterate over:

for Some x in [Some 1; None; Some 2; Some 2] do printf "%d" x

Only the matching elements are selected. Printout will be “122”

let squares = seq { for i in 1 .. 100 -> (i,i*i) }

let sum = ref 0

let sum2 = ref 0

for (i,i2) in squares do

sum := !sum + i

sum2 := !sum2 + i2

printf "Sum = %d\nSquare sum = %d\n" !sum !sum2

This example illustrates a mix of matched variables, which stand for values,
and reference variables which stand for cells that contain values

Imperative programming in F# (revised 2020-02-12) 24

Concluding Example: Iteration is Recursion

Let’s finally see how we can define our own imperative control constructs
through recursion

We will define a while loop construct

This shows that iteration is just a special case of recursion!

Since while is already a construct in F#, we define a function repeat that

implements a repeat-until construct (like while, but executes the loop
body once before making the test)

Imperative programming in F# (revised 2020-02-12) 25

Idea: define a function repeat b s, where b is a condition (type bool),

and s a loop body (executed only for the side effect)

Use sequencing to make executions of arguments happen in the right order:

• first execute s,

• then test if b is true. If yes then exit, else recursively call repeat again,

with the same arguments b and s

If s has side effects, and b depends on these, the recursion can still
terminate

Imperative programming in F# (revised 2020-02-12) 26

Repeat, First Attempt

Let’s implement this idea right off:

let rec repeat b s = s; if b then () else repeat b s

repeat : bool -> unit -> unit

However, this solution has a problem! Consider this:

let n = ref 3

repeat (!n = 0) (printf "n=%d\n" !n; n := !n - 1)

If we evaluate the above then we get the printout “n=3”, and then the

evaluation goes into infinite recursion.

Why??

Imperative programming in F# (revised 2020-02-12) 27

Why it Went Wrong

repeat is a function.

F# uses call by value.

Therefore, the arguments get evaluated the first time repeat is called.

Subsequent argument uses will not re-evaluate them, just reuse their

previous values

Therefore, the side effects of s will only occur once

b will always return the value of the first call =⇒ infinite recursion, if true

How can we fix this?

Imperative programming in F# (revised 2020-02-12) 28

Repeat, Second Attempt

A way to have the arguments re-evaluated each time they are used is to

wrap each one into a function

A function body is re-evaluated each time the function is called

This will give us the desired effect!

The functions will be given a dummy argument

We can use the value () as dummy argument

We obtain

b : unit -> bool

s : unit -> unit

Imperative programming in F# (revised 2020-02-12) 29

New Solution

let rec repeat b s = s (); if b () then () else repeat b s

repeat : (unit -> bool) -> (unit -> unit) -> unit

If we define

let n = ref 3

let b1 = (fun () -> !n = 0)

let s1 = (fun () -> printf "n=%d\n" !n; n := !n - 1)

And evaluate repeat b1 s1 we get (in fsi):

n=3

n=2

n=1

val it : unit = ()

Imperative programming in F# (revised 2020-02-12) 30

