Problem Solving, Programming, and Calculation

Björn Lisper
School of Innovation, Design, and Engineering
Mälardalen University
bjorn.lisper@mdh.se
http://www.idt.mdh.se/~blr/

Overview

Basic concepts of functional programming: computation by calculation, values, expressions, types, declarations

First glance of F\#: introduction, basic language elements
Some simple functional programming examples/exercises

Computation by Calculation

In "ordinary" programming languages, computation alters state by writing new values to program variables:

State before: $\mathrm{x}=3, \mathrm{y}=4$
$\mathrm{x}=17+\mathrm{x}+\mathrm{y}$
State after: $\mathrm{x}=24, \mathrm{y}=4$
This means you perform computations in sequence
There is a control flow that decides this sequence:

```
for(i=0,i++,i<17)
    { if (j > i) then x++ else y++;
    x = y + j;
    }
```

In (pure) functional languages, computation is simply calculation:

$$
\begin{aligned}
3 *(9+5) & \Longrightarrow 3 * 14 \\
& \Longrightarrow 42
\end{aligned}
$$

Forget about assignments, sequencing, loops, if-then-else, ...
Forget everything you know about programming! (Well, almost)
You might wonder how to do useful stuff just by calculating, we'll see later ...

In functional languages we have:

- functions
- recursion (instead of loops)
- expressive data types (much more than numbers)
- advanced data structures
and calculation on top of that

Functions

Functions, mathematically: sets of pairs where no two pairs can have the same first component:
$f=\{(1,17),(2,32),(3,4711)\}$
$f(2)=32$
Or, given the same argument the function always returns the same value (cannot have $f(2)=32$ and $f(2)=33$ at the same time)

Functions model determinism: that outputs depend predictably on inputs
Something we want to hold for computers as well ...

Defining a function by writing all pairs can be very tedious
Often defined by simple rules instead
$\operatorname{simple}(x, y, z)=x \cdot(y+z)$
These rules express abstraction: that a similar pattern holds for many different inputs
("For all x, y, z, simple (x, y, z) equals $x \cdot(y+z)$ ")
Abstraction makes definitions shorter and easier to grasp
A good property also for software, right?

Recursion

Mathematical functions are often specified by recursive rules
Recursion means that a defined entity refers to itself in the definition
This seems circular, but can make sense
Example: the factorial function "!" on natural numbers
$0!=1$
$n!=n \cdot(n-1)!, \quad n>0$
Recursion corresponds to loops in ordinary programming

Pure Functional Languages

Pure functional languages implement mathematical functions
A functional language is pure if there are no side-effects
A side effect means that a function call does something more than just return a value

An example in C :

```
int f(int x)
{
    n++;
    return(n+x);
}
```

Side effect for f : global variable n is incremented for each call
This means that f returns different values for different calls, even when called with the same argument

Much harder to reason mathematically about such functions: for instance,
$\mathrm{f}(17)+\mathrm{f}(17) \neq 2 \times \mathrm{f}(17)$
Side effects require a more complex model, and thus makes it harder to understand the software

In pure functional languages, functions are specified by side-effect free rules (declarations)

In F\#:
let simple $\mathrm{x} y \mathrm{z}=\mathrm{x}$ ($\mathrm{y}+\mathrm{z})$
Each rule defines a calculation for any actual arguments:

$$
\begin{aligned}
\text { simple } 395 & \Longrightarrow 3 *(9+5) \\
& \Longrightarrow 3 * 14 \\
& \Longrightarrow 42
\end{aligned}
$$

Just put actual arguments into the right-hand side and go!
Compare this with an execution model that must account for side-effects

Exercise

Calculate simple (simple 234) 56
Note that we can do the calculation in different order
Do we get the same result?
More on this later . . .

The mathematical view makes it possible to prove properties of programs When calculating, all intermediate results are mathematically equal:

$$
\text { simple } 395=3 *(9+5)=3 * 14=42
$$

For instance, prove that simple x y $\mathrm{z}=$ simple x z y for all $\mathrm{x}, \mathrm{y}, \mathrm{z}$:

$$
\begin{aligned}
\text { simple } x y z & =x *(y+z) \\
& =x *(z+y) \\
& =\text { simple } x z y
\end{aligned}
$$

We cannot do this for functions with side-effects

Expressions, Values, and Types

Calculation is performed on expressions:
simple (simple 23 4) 56
Expressions are calculated into values:
simple (simple 234$) 56 \Longrightarrow 154$
Values are also expressions, which cannot be calculated any further

Types

Many programming languages have types
Types represent sets of values (like integers)
Types help avoiding certain programming errors, like adding an integer with a character

A programming language can be:

- strongly typed: every program part must have a legal type
- weakly typed: every program part can have a legal type, but need not
- untyped: no types exist

A First Introduction of F\#

F\# is a strongly typed, functional language
It uses eager evaluation (compute function arguments fully before making the call), but also supports lazy evaluation and computation by demand (don't compute anything before it's needed)
It is higher order (functions are ordinary data)
It is not pure (side effects possible), but encourages pure programming
It supports imperative and object-oriented programming
It has a polymorphic type system, with type inference, subtyping, and overloading of common operators

It has syntactic facilities to help write clear and understandable programs

F\# implementation

F\# comes from Microsoft Research
Current version is 4.5
Included in VS 2017, can also be freely downloaded
Can also be run on Mac/linux under Mono
Three ways to run F\# compiler:

- In Visual Studio
- fsc - batch compiler
- fsi - interactive command line compiler

Basic Language Elements of F\#

A first introduction:

- Values
- Types (atomic values, composed values)
- Operators and predefined functions
- Other syntactic forms

Numerical Types

F\# has a number of numerical types, some important examples:
int $\quad 32$-bit integers ($1,-3,54873, \ldots$)
float double precision (64-bit) floats (1.0, 3.14159, 3.2e3, ...)
int 64 64-bit integers (1L, -3L, 54873L, ...)
single single precision (32-bit) floats (1.0f, 3.14159f, 3.2e3f, ...)

Functions and Operators on Numerical Types

The usual ones:
$+,-, \star, /$, \% (modulus): all numeric types
Operands must have same type: $2+3$ OK, $2+3.0$ not OK
** (power): all floating-point types
Bitwise operators: all integer types
Most "typical" math functions (trigonometric, exponent, etc)
Type conversion functions: same name as type converted to:
int $17.3 \Longrightarrow 17$
int 17L $\Longrightarrow 17$

Numerical Expressions

Numerical expressions look like in most languages:
$x+7 * y$
$3.14159 /(x+1.0)-33.0$
$(\mathrm{x}+7 \star \mathrm{y}$ is the same as $\mathrm{x}+(7 \star \mathrm{y})$, since * binds stronger than +)

Characters

Type char for characters
Syntax: ' $a^{\prime},{ }^{\prime} b^{\prime}$, , $\backslash n$ ' (newline),..
Characters are elements in strings
More on strings later

Booleans

Type bool for the two booleans values true, false
Boolean operators and functions: $\& \&$ (and), । । (or), not
Relational operator returning a boolean value: =, <>, <, <=, >=, >
Can compare elements from any "comparable" type (more on this later)

Conditional

F\# has a conditional if-then-else expression:

```
if true then x else y 
```

if false then x else $y \Longrightarrow y$

So we can write expressions like

```
if x > 0 then x else -x
```

However, the two branches must have the same type
Thus, if $\mathrm{x}>0$ then 17 else ' a^{\prime} is illegal

Functions

Functions take a number of arguments and return a result
Some predefined ones, and you can define your own
A little unusual syntax: no parentheses around arguments
sqrt 17.0
exp 17.03 .0
(There are good reasons for this syntax, more on this later)

The space between function and argument can be seen as a special operator: function application

Function application binds harder than any other operator
Thus, $f x+y$ means ($f x$) $+y$, not $f(x+y)$
(Common beginner's mistake to forget this)

Declarations

You can define your own entities
Entities of any type can be defined by a let declaration
let pi $=3.14159$ defines pi to be a floating-point constant
let simple x y $\mathrm{z}=\mathrm{x} *(\mathrm{y}+\mathrm{z})$ defines simple to be a function in three arguments

Types of Defined Entities

Note that we did not give any types in the definitions
F\# manages to find types automatically!
This is called type inference
A very simple example:
let $\mathrm{pi}=3.14159$
Here, pi will automatically obtain the type float since 3.14159 can only have type float

Explicit Type Declarations

However, we can also give explicit types (sometimes useful)
e : t declares e to have type t
For instance:
let $f x=(x+x)$: float forces the right-hand side of the declaration to have type float.
(If we just write let $f x=(x+x)$, then F \# will assume that " + " is plus on the type int.)

What about let $\mathrm{f} x=(\mathrm{x}+\mathrm{x})$: char?

Recursive Definitions

As a first exercise, recall the factorial function:
$0!=1$
$n!=n \cdot(n-1)!, \quad n>0$
Define it in $\mathrm{F} \#$!
(Answer on next slide)

Factorial in F\#

let rec fac $n=$ if $n=0$ then 1 else $n * f a c(n-1)$
Note let rec: recursive definition, fac in right-hand side must be same as in left-hand side. More in this later

Exercise:

Calculate fac 3

```
fac 3\Longrightarrow if 3 = 0 then 1 else 3*fac (3-1)
    "if false then 1 else 3*fac (3-1)
    "3*fac (3-1)
    "3*fac 2
    "3*(if 2 = 0 then 1 else 2*fac (2-1))
    "3*(if false then 1 else 2*fac (2-1))
    " 3*2*fac (2-1)
    ... etc ...
    " 3*2*1*fac (1-1)
    " 
    " **2*1*1
    "
```

Eventually we'll reach the "base case" fac 0 . This is what makes recursion work here!

Pattern Matching

Another way to write the factorial function: use patterns
F\# has a case construct

```
match expr with
    | pattern1 -> expr1
    | pattern2 -> expr2
```


 Every case has a pattern for the argument
Cases are checked in order, the first that matches the argument is selected
For "atomic" types like numeric types, the possible patterns are constants (matching exactly that constant), or variables (matching any value)

So we can define fac like this instead:

```
let rec fac n = match n with
    | 0 -> 1
    | _ -> n*fac (n-1)
```

If n is 0 return 1 , otherwise return $n *$ fac $(n-1)$
"_" is a "wildcard", matches anything

More on Pattern Matching

Note that match . . . with is just another expression, it is evaluated and returns a result

Pattern matching is really useful with structured data, where it can be used to conventiently pick out parts of data structures. More on this later

Nontermination and Errors

Now what about fac (-1)?
$\mathrm{fac}(-1) \Longrightarrow(-1) * \mathrm{fac}(-2) \Longrightarrow(-1) \star(-2) \star \mathrm{fac}(-3) \Longrightarrow \cdots$
Infinite recursion! Will never terminate.
For computations that never return anything, we use the notation " \perp " for the "resulting value"

Thus, fac $(-1)=\perp$
Remember fac is really just defined for natural numbers, not for negative numbers

It's good practice to have controlled error handling of out-of-range arguments

The F\# failwith Function

F\# has an failwith function, which when executed prints a string and stops the execution
E.g.,
failwith "You cannot input this number to this function" (Strings in F\# are written within quotes, like "Hello world")

A version of fac with error handling:

```
let rec fac \(n=\)
    match \(n\) with
    | 0 -> 1
    \(\mid \quad-\quad\) if \(n>0\)
        then \(n * f a c(n-1)\)
        else failwith "Negative argument to fac"
```

Would we be able to write this case-by case ($\mathrm{n}>0, \mathrm{n}=0, \mathrm{n}<0$)?
Yes, pattern-matching can be extended with guards. More on this later

Factorial "Old Style"

How would you implement the factorial function in an imperative language, with loops and program variables that can be assigned new values?

Factorial "Old Style" (II)

My suggestion would be something like this (in C):

```
int fac (int n) {
    int acc = 1;
    while (n \= 0)
    {
        acc= n*acc;
        n = n-1;
    }
    return(acc);
}
```

Notice how acc is used to successively accumulate the product. Could we do something similar in a pure functional language?

Factorial with Accumulating Arguments

The answer is yes:
let rec facl acc $\mathrm{n}=$ match n with | 0 -> acc | _ -> facl (n*acc) (n-1)
let fac $n=$ fac1 $1 n$
This solution uses a help function fac1 with two arguments
The second argument is an accumulating argument, where we successively collect the result. It plays the same role as acc in the C loop

Exercise: calculate fac 3 with this new definition

McCarthy's Transformation

The derivation of fac with accumulating arguments from the C loop is an example of McCarthy's Transformation.

This transformation is a systematic method to transform imperative programs into pure functional programs

Theorem: any imperative program that can be expressed as a flowchart can be transformed into a pure functional program computing the same thing

So imperative programming is just a special case of functional programming, and loops are just a special case of recursion

Local Definitions

The fac version with accumulating argument uses a help function fac1
This function is globally defined
However, only used by fac
We may want to hide it in the definition of fac
F\# has a let (rec) ... in ...-construct for local definitions:

```
fac n = let rec facl acc n = match n with
    | 0 -> acc
    | _ -> fac1 (n*acc) (n-1)
```

 in facl 1 n
 Defines fac1 locally in the expression after "in". Not visible outside!
let (rec) . . . in-expressions are ordinary expressions and return values, can be used wherever ordinary expressions can be used:
$17+$ let $x=$ fac 3 in $x+3 * x \Longrightarrow$
$17+$ let $x=6$ in $x+3 * x \Longrightarrow 17+(6+3 * 6) \Longrightarrow 41$
Also note that the defined entity (x here) only needs to be computed once saves work!

So let can be used also to save work when the same result is to be used many times

Function Types

A function that takes an argument of type a and returns a value of type b has the function type a -> b

For instance, fac : int -> int
(Note resemblance with mathematical notation)
What about functions with several arguments?
let simple $x \quad y \quad z=x *(y+z)$
simple : int $->$ int $->$ int $->$ int
Last type is result type, preceding types are the respective argument types
(We'll explain later why multi-argument function types look this way)

Types for Data Structures

F\# has two important predefined types for data structures: tuples and lists
(Also some more types for this, but we'll leave them for now)
Lists are very important data structures in functional programming
They are sequences of elements
Lists can be arbitrarily long, but (in F\#) all elements must be of the same type
If a is a type, then a list is the type "list of a"
E.g. int list, char list, (int list) list, (float -> int) list

A list can contain elements of any type (as long as all have the same type)

Constructing Lists

Lists are built from:

- the empty list: []
- the "cons" operator, which puts an element in front of a list: : :

Example: 1::(2::(3::[]))
: : and [] are called constructors: they "construct" data structures
(Constants like 17 and ' x ' are also constructors, but they only construct themselves)
(Don't mix up with constructors in object-oriented langages)
$1:: 2:: 3::[]$ is same as $1::(2::(3::[]))(":: "$ is right-associative)
[1;2;3] is another shorthand for 1:: (2:: (3: []))
The first element of a nonempty list is the head:
List.head [1;2;3] $\Longrightarrow 1$
(List. head is a function from the List module, thus the prefix List. More on modules later)

The list of the remaining elements is the tail
List.tail [1;2;3] $\Longrightarrow[2 ; 3]$
Also a function List. isEmpty to check if a list is empty or not:
List.isEmpty [] \Longrightarrow true

To the left is a graphical picture of $[1 ; 2 ; 3]$ as an expression tree:

Underneath, there is a linked data structure (shown to the right)
In conventional languages you'd have to manage the links yourselves. Functional programming runtime systems handle them automatically

Some List Functions

F\# has many builtin functions on lists in the List module. Let's look at some and try to program them, as an exercise

List.length xs, computes the length of the list xs
List.length ['a';'b';'c'] $\Longrightarrow 3$
List. sum xs, sums all the numbers in x s
List.sum [1;2;3] $\Longrightarrow 6$
(Solutions on next slide)

```
let rec length l =
    if List.isEmpty l
    then 0
    else 1 + length (List.tail l)
let rec sum l =
    if List.isEmpty l
        then 0
        else List.head l + sum (List.tail l)
```


With Pattern Matching

```
let rec length l = match l with
        | [] -> 0
        | (x::xs) -> 1 + length xs
let rec sum l = match l with
    | [] -> 0
    | (x::xs) -> x + sum xs
```

The pattern (x::xs) matches any list that is constructed with a cons (that is, any non-empty list)
x gets bound to the head, and x s to the tail

An Observation on sum

We have:
$\operatorname{sum}[1,2,3]=\operatorname{sum} 1::(2::(3::[])) \Longrightarrow 1+(2+(3+0)) \Longrightarrow 6$
Note the similarity between tree for list 1:: (2:: (3:: [])) and sum expression for $1+(2+(3+0))$:

sum basically replaces : : with + and then calculates the result
This is a common pattern! We'll get back to this when we treat higher-order functions

Also: in a sense, data structures (like lists) in F\# are just expressions where the "operators" (= constructors) cannot be further evaluated: thus, the constructors are left in the result (where they build the data structure)

Tuples

Tuples are similar to records, or objects
A tuple is like a container for data with a fixed number of slots
An example: ('a',17,3.14159)
This is a three-tuple whose first component is a character, the second an integer, and the third a floating-point number

It has the tuple type char * int * float
Tuples can contain any type of data, for instance:

```
(fac,(17,'x')) : (int -> int) * (int * char)
```

Thus, there are really infinitely many tuple types

Tuples (II)

Tuple types are similar to cartesian products on sets:

Similar to vector spaces. An n-tuple is like a vector with n elements, although the elements do not have to be numbers

An Example of the Use of Tuples

Use tuples with two floats to represent 2D-vectors
Define functions vAdd, vsub, vLen to add, subtract, and compute the length of vectors:

```
vAdd,vSub : (float * float) -> (float * float) -> (float * float)
```

vLen : (float * float) -> float
(Solutions on next slide)

```
let vAdd (x1,y1) (x2,y2) = (x1+x2,y1+y2) : float * float
let vSub (x1,y1) (x2,y2) = (x1-x2,y1-y2) : float * float
let vLen (x,y) = sqrt (x*x + y*y) : float
```

Note the pattern-matching to get the components of the argument tuples
(Why did we have to type the function bodies?)

Another Matching Example with Tuples

take $n \mathrm{xs}$, returns list of first n elements from the list xs
take 2 ['a';'b';'c'] $\Longrightarrow[' a ' ; ' b ']$
Let's define it using the match . . . with construct!
(Solution on next slide)
let rec take n xs $=$

```
match (n,xs) with
```

$\mid(0,-) \quad \rightarrow \quad$ []
| (_r]) $\quad->$ failwith "taking too many elements"
| (_, x::XS) \rightarrow x : : take ($n-1$) xs

Note how we constructed a tuple just to be able to match on both arguments to take

The second, "local" xs "obscures" the "outer" xs in the recursive call take ($n-1$) xs

Excercise: provide some error handling for the case $\mathrm{n}<0$!

