
Modules and Data Type Declarations

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Modules and Data Type Declarations (revised 2019-01-15)

Modules and Data Types

F# code is packaged in name spaces, and modules

We’ll not talk much about namespaces now: basically, a namespace can
contain a number of modules:

module1
module2

module3

namespace

Modules and Data Type Declarations (revised 2019-01-15) 1

Modules

A module contains a number of declarations

The scope of the declarations is the module: this is where they are visible

Module = software component containing functions, data types, . . .

Good for packaging libraries to be reused in other F# programs

Modules and Data Type Declarations (revised 2019-01-15) 2

Declaring Modules

Syntax of modules:

module xxx

...declarations...

Example:

module Allan

let f x = x + 17

let g x = f x + f (x*2)

How access f and g?

Modules and Data Type Declarations (revised 2019-01-15) 3

module Allan

let f x = x + 17

let g x = f x + f (x*2) // f is visible here

Inside Allan: f and g visible (the module is their scope)

Outside Allan (in same name space): f and g visible if prefixed with their
module name

Allan.f 4711

Modules and Data Type Declarations (revised 2019-01-15) 4

Opening Modules

A module can be opened to make its declared identifiers visible without the
prefix:

module Allan

let f x = x + 17

let g x = f x + f (x*2) // f is visible here

open Allan

let h x = f (x + 3) - g x

Modules and Data Type Declarations (revised 2019-01-15) 5

Order of Declarations

In F#, the order of declarations matter:

let f x = x + 17

let g x = f x + f (x*2) // OK, f is visible here

let g x = f x + f (x*2) // Not OK, f is not visible here

let f x = x + 17

So, an entity is really not in scope in its module until after it has been
declared

Modules and Data Type Declarations (revised 2019-01-15) 6

A Simple Module Example

A simple module Vector with our previous vector operations on tuples:

module Vector

let vAdd (x1,y1) (x2,y2) = (x1+x2,y1+y2) : float * float

let vSub (x1,y1) (x2,y2) = (x1-x2,y1-y2) : float * float

let vLen (x,y) = sqrt (x**2.0 + y**2.0)

Modules and Data Type Declarations (revised 2019-01-15) 7

In the same namespace, the Vector module can now be opened:

open Vector

let v1 = (1.0,3.0)

let v2 = (3.0,2.0)

let (x,y) = (vAdd v1 v2) in printf "(%f,%f)" x y

(printf is similar to printf in C. It will be executed when a .exe file using
the module is executed (or, when the module is loaded in fsi). It has the

side effect of printing to stdout (typically screen). printf is thus impure)

Modules and Data Type Declarations (revised 2019-01-15) 8

Local Modules

The modules so far have been top-level modules

There can only be a single top-level module in one file

There can be several local modules in the same file

Local modules must have their declarations indented:

module Local

let f x = ...

Modules and Data Type Declarations (revised 2019-01-15) 9

Data Type Declarations

In F# you can define your own data types

A first, simple example:

type Color = Black | Blue | Green | Cyan | Red | Magenta

| Yellow | White

Here, Color is a type (just like bool, int, int list)

Black, Blue etc. are constructors (just like true, 17, [])

The elements of Color are the values Black, Blue etc.

Syntax rule: names of user-defined constructors must start with upper-case
letter

Modules and Data Type Declarations (revised 2019-01-15) 10

We can write functions that use the Color values:

f : Color -> int

let rec f color =

match color with

| Black -> 17

| Blue -> f Black + 2

...

Pattern-matching works as usual on user-defined constructors.

(User-defined types are no different from predefined types!)

Modules and Data Type Declarations (revised 2019-01-15) 11

The previous example was quite limited

F# can do more than types with a small number of given elements

We can for instance define types whose elements are structured data (like

tuples)

We’ll do an example on next page

Modules and Data Type Declarations (revised 2019-01-15) 12

Example: Geometrical Shapes

(Adapted from P. Hudak The Haskell School of Expression: Learning
Functional Programming through Multimedia)

Say we want to represent some kinds of geometrical shapes

(Later, we may want to do things with them like computing their areas, or

displaying them graphically, or composing them into more complex shapes)

We want to represent rectangles, ellipses, right triangles (90 degree angle),
and general polygons

Modules and Data Type Declarations (revised 2019-01-15) 13

Rectangles, ellipses, and right triangles are characterized by two numbers,

and polygons by a number of 2D-coordinates:

s1

s2

r1

r2

s1

s2

(x2,y2)

(x1,y1)

(x3,y3)(x4,y4)

(x5,y5)

Modules and Data Type Declarations (revised 2019-01-15) 14

Here’s the data type declaration:

type Shape = Rectangle of float * float

| Ellipse of float * float

| RtTriangle of float * float

| Polygon of (float * float) list

So, for instance, Rectangle (2.3,3.1) represents a rectangle with sides

of length 2.3 and 3.1, respectively

Modules and Data Type Declarations (revised 2019-01-15) 15

The constructors Rectangle etc. take arguments and build data structures
containing these arguments

Polygon

::

(,)

4.03.5

::

::

[]

(,)

(,)4.5 6.1

3.8 9.0

Rectangle RtTriangleEllipse

(,) (,) (,)

2.3 9.05.19.09.03.1

You can also think of them as unique tags:

Rectangle 3.12.3

So Rectangle (2.3,3.1) is basically the same as the tuple (2.3,3.1)

plus a tag telling that this tuple represents a rectangle

Modules and Data Type Declarations (revised 2019-01-15) 16

Type Synonyms

In F#, we can declare type synonyms

A type synonym is a simple alias

This is useful since sometimes one uses the same data type to represent
different things

With type synonyms, we can use different type names to help keep track of

this.

Example:

type flags = bool * bool * bool

Modules and Data Type Declarations (revised 2019-01-15) 17

Type synonym declarations for our geometrical shapes:

type radius = float

type side = float

type vertex = float * float

New definition of the Shape data type:

type Shape = Rectangle of side * side

| Ellipse of radius * radius

| RtTriangle of side * side

| Polygon of vertex list

Modules and Data Type Declarations (revised 2019-01-15) 18

Functions on Shapes

Let’s define a function area : Shape -> float that computes the area
of a shape

Solution on the next few slides . . .

Modules and Data Type Declarations (revised 2019-01-15) 19

area can be defined case by case by pattern-matching on different

constructors

area shape = match shape with

....

Easy cases first:

| Rectangle (s1,s2) -> s1*s2

| RtTriangle (s1,s2) -> s1*s2/2.0

| Ellipse (r1,r2) -> pi*r1*r2

(Assuming pi is defined in the module we’re working in)

Modules and Data Type Declarations (revised 2019-01-15) 20

What about polygons?

Three corners or more: compute it by cutting a triangle, computing its area,

and adding to area of rest of polygon (which is also a convex polygon)

v1

v2

v3
v4

v5

Recursive function: how do we know that it will terminate?

Modules and Data Type Declarations (revised 2019-01-15) 21

v1

v2

v3
v4

v5

1. We start with a finite number of corners

2. One corner removed for each cut

3. Thus, sooner or later there are only three corners left

4. That is a single triangle, we then compute the area of that triangle and

return it

Modules and Data Type Declarations (revised 2019-01-15) 22

Solution:

Assume for now a function triArea that compute the area of a triangle

given its corners

| Polygon (v1::v2::v3::vs)

-> (triArea v1 v2 v3) + area (Polygon (v1::v3::vs))

| (Polygon _) -> 0.0

(The first case takes care of the case where the polygon has at least three

corners. The last case takes care of the case when it has two or less
corners)

Modules and Data Type Declarations (revised 2019-01-15) 23

triArea is computed with Heron’s formula:

a

b c

A =
√

s(s− a)(s− b)(s− c), where s =
1

2
(a+ b+ c)

(This is classical geometry. Heron lived 2000 years ago.)

Modules and Data Type Declarations (revised 2019-01-15) 24

We have the vertices but not the length of the sides between them

Assume for now a function distBetween that computes the distance

between two vertices:

let triArea v1 v2 v3 = let a = distBetween v1 v2

let b = distBetween v2 v3

let c = distBetween v3 v1

let s = 0.5*(a+b+c)

in sqrt (s*(s-a)*(s-b)*(s-c))

(Note how we can make multiple local definitions using let. With the default
simplified syntax, we can even drop “in”)

Modules and Data Type Declarations (revised 2019-01-15) 25

Finally,

let distBetween (x1,y1) (x2,y2) = sqrt ((x1-x2)**2.0 + (y1-y2)**2.0)

(x1,y1)

(x2,y2)

|x1−x2|

|y1−y2|

Modules and Data Type Declarations (revised 2019-01-15) 26

A Note on Programming Style

In the polygon case, we used smaller functions (triArea, distBetween)
to compute results needed to compute the whole area

This is a style of programming supported well by functional programming

languages like F#: define (or use predefined) small, general functions to
successively compose the desired solution

Modules and Data Type Declarations (revised 2019-01-15) 27

Record Types

F# also has records (similar to structs in C, or simple objects)

Basically, a record is a tuple where every field has a name

A declaration of a record type for representing vertices in polygons

(2D-coordinates):

type Vertex = { x : float; y : float }

Access is by “dot” notation, like:

let vlen coord = sqrt (coord.x**2.0 + coord.y**2.0)

vlen : Vertex -> float

Record fields can not be accessed by pattern matching

Modules and Data Type Declarations (revised 2019-01-15) 28

Creating Records

A record is created by giving the value for each field:

{ x = 3.0; y = 4.0 }

Order does not matter:

{ y = 4.0; x = 3.0 }

A function that converts a pair of floats into a Vertex:

let pair2Vertex (a,b) = { x = a; y = b }

pair2Vertex : (float * float) -> Vertex

Modules and Data Type Declarations (revised 2019-01-15) 29

Creating Records

A construct to create a new record from an old one, by replacing the values
of some fields:

let project v = { v with y = 0.0 }

project { x = 3.0; y = 4.0 } =⇒ { x = 3.0; y = 0.0 }

x

y
(x,y)

(x,0)

Modules and Data Type Declarations (revised 2019-01-15) 30

Exercise

An exercise:

Redefine the Shape data type to use records rather than tuples

Then redefine the area function to use this new data type instead!

Suitable to do at home . . .

Modules and Data Type Declarations (revised 2019-01-15) 31

