
Object-oriented Programming in F#

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Object-oriented Programming in F# (revised 2020-02-12)

F# as an Object-oriented Programming Language

F# has an object-oriented part

Important to know something about this – accessing .NET libraries and
services is done in an object-oriented fashion

F# has these kinds of object types:

• Concrete object types

• Object interface types

Object-oriented Programming in F# (revised 2020-02-12) 1

Concrete Object Types

F# objects can be both mutable and immutable

Methods are called members

The simplest case: extending a conventional F# type with member

declarations

These provide a kind of interface to the data type

(They’re really just functions that take an argument of that type)

Object-oriented Programming in F# (revised 2020-02-12) 2

An Example

Extending a record data type with members, turning the records into objects:

type vector2D =

{ x : float; y : float }

member v.Length = sqrt (v.x**2.0 + v.y**2.0)

member v.Scale(k) = { x = k*v.x; y = k*v.y }

member v.X_shift(x_new) = { v with x = x + x_new }

static member Zero = { x = 0.0; y = 0.0 }

static member X_vector(x_in) = { x = x_in; y = 0.0 }

(All examples in this presentation are adapted from Syme et. al. Expert F# 2.0)

Object-oriented Programming in F# (revised 2020-02-12) 3

v is like “this”, or “self” in other languages. In F# you can choose

whatever identifier you want

Members without arguments are properties, members with arguments are
methods

Members can be static, meaning they operate on types rather than values.

We’ll see an example soon

The above is an immutable object type: no record fields can be updated

Object-oriented Programming in F# (revised 2020-02-12) 4

This is the object type resulting from the declaration:

type vector2D =

{ x : float; y : float }

member Length : float

member Scale : k:float -> vector2D

member X_shift : x_new:float -> vector2D

static member Zero : vector2D

static member X_vector : x_in:float -> vector2D

The member types become part of the object type

Object-oriented Programming in F# (revised 2020-02-12) 5

Creating an object and using its methods and properties:

let vec = { x = 3.0; y = 4.0 } // create an object "vec"

vec.Length // length of vec = 5.0

let vec2 = vec.Scale(2.0) // create a new object "vec2"

vec2.Length // length of vec = 10.0

vec.Length // length of vec is still 5.0

vector2D.Zero // a new object with x, y = 0.0

Note the immutability: vec.Scale(2.0) creates a new object, the old one
is not affected

Static members are applied to the type, not to values of that type

Object-oriented Programming in F# (revised 2020-02-12) 6

Members vs. Functions

Consider this alternative, F# with ordinary functions:

type vector2D =

{ x : float; y : float }

let Length v = sqrt (v.x**2.0 + v.y**2.0)

let Scale v k = { x = k*v.x; y = k*v.y }

let Zero = { x = 0.0; y = 0.0 }

let X_vector x_in = { x = x_in; y = 0.0 }

Perfectly possible, does the same thing. But we lose the bundling of

members and record type into an object type

Object-oriented Programming in F# (revised 2020-02-12) 7

A Variation

Any F# type can be enriched with members into an object type:

type Tree<’a> = Leaf of ’a | Branch of Tree<’a> * Tree<’a>

member t.Fringe =

match t with

| Leaf x -> [x]

| Branch (t1,t2) -> t1.Fringe @ t2.Fringe

It doesn’t have to be a record type

Members can be recursive

Object-oriented Programming in F# (revised 2020-02-12) 8

Constructed Classes

Goes beyond the simple object types where ordinary F# types are extended
with members

Adds a possibility to define entities local to objects

These entities can be precomputed

Object-oriented Programming in F# (revised 2020-02-12) 9

An Example of a Constructed Class

vector2D using a constructed class:

type vector2D(x : float; y : float) =

let len = sqrt (x**2.0 + y**2.0)

member v.Length = len

member v.Scale(k) = vector2D(k*x, k*y)

member v.X_shift(x_new) = vector2D(x = x + x_new, y = y)

static member Zero = vector2D(x = 0.0, y = 0.0)

static member X_vector(x_in) = vector2D(x = x_in, y = 0.0)

Object-oriented Programming in F# (revised 2020-02-12) 10

vector2D is a constructor (in the OO sense): a function that creates a new

object

let v = vector2D(3.0, 4.0)

len will be computed then vector2D creates the new object

Arguments to members can be given both by position, or by name

let v = vector2D(3.0, 4.0) \\ by position

let v = vector2D(x = 3.0, y = 4.0) \\ by name

let v = vector2D(y = 4.0, x = 3.0) \\ by name, order does not matter

Object-oriented Programming in F# (revised 2020-02-12) 11

The resulting type:

type vector2D =

new : x:float * y:float -> Vector2D

member Length : float

member Scale k:float -> Vector2D

member X_shift x_new:float -> Vector2D

static member Zero : vector2D

static member X_vector : x_in:float -> Vector2D

Note “new”, tells the type of the vector2D constructor

Object-oriented Programming in F# (revised 2020-02-12) 12

Named and Optional Arguments

With named arguments, it is convenient to make arguments optional and
have a default value for them

Named arguments can be used with all method calls

Optional arguments are preceded by “?”

An optional argument with type ’a will have type ’a option within the
object type declaration

An argument given with value v will have the value Some v inside

If the argument is not given, it will have the value None

It is the responsibility of the programmer to write code that uses this
distinction to provide a default value

Object-oriented Programming in F# (revised 2020-02-12) 13

Optional Arguments, Example

We turn x and y into optional arguments with default 0.0:

type vector2D(?x : float; ?y : float) =

let x = match x with

| None -> 0.0

| Some v -> v

let y = match y with

| None -> 0.0

| Some v -> v

.....

Note the new local definitions of x and y – not the same as the arguments x

and y!

Object-oriented Programming in F# (revised 2020-02-12) 14

Optional Arguments, Continued

A builtin function to use with optional arguments:

defaultArg : ’a option -> ’a -> ’a

Its definition;

DefaultArg arg default =

match arg with

| None -> default

| Some a -> a

An example of its use:

let x = defaultArg x 0.0

let y = defaultArg y 0.0

...

Object-oriented Programming in F# (revised 2020-02-12) 15

Mutable Object Types

One idea with object-orientation is to encapsulate side-effects into objects

This reduces the risks with the side-effects

Side-effects means we should have mutable data inside objects

F# supports this

Object-type internal variables can be declared mutable

Members are defined with get and set methods:

• The get method returns the current value for the member

• The set method sets a new value for the member by setting new values
for the object-internal mutable variables

Object-oriented Programming in F# (revised 2020-02-12) 16

An Example

The 2D-vector again, but now with two different views:

x

y

(x,y)

Length

Length = sqrt(x**2 + y**2)

Angle

x = Length*cos(Angle)

y = Length*sin(Angle)

Angle = atan(y/x)

An object representing a 2D-vector will have x and y as mutable state

However, we will also provide methods for Length and Angle

Getting Length and Angle will compute them from x and y

Setting Length or Angle will set x and y

Object-oriented Programming in F# (revised 2020-02-12) 17

Object Type Declaration

type mutVector2D(x : float; y : float) =

let mutable current_x = x

let mutable current_y = y

member v.x with get () = current_x and set x = current_x <- x

member v.y with get () = current_y and set y = current_y <- y

member v.Length

with get () = sqrt(current_x**2.0 + current_y**2.0)

and set len = let theta = v.Angle

current_x <- len*cos theta

current_y <- len*sin theta

member v.Angle

with get () = atan2 current_y current_x

and set theta = let len = v.Length

current_x <- len*cos theta

current_y <- len*sin theta

Object-oriented Programming in F# (revised 2020-02-12) 18

Resulting type:

type mutVector2D =

new : float * float -> mutVector2D

member x : float with get,set

member y : float with get,set

member Length : float with get,set

member Angle: float with get,set

Object-oriented Programming in F# (revised 2020-02-12) 19

How to Use

> let v = mutVector2D(3.0, 4.0);;

val v : mutVector2D

> (v.x, v.y);;

val it : float * float = (3.0,4.0)

> (v.Length, v.Angle);;

val it : float * float = (5.0,0.927295218)

> v.Length <- 10.0;;

val it : unit = ()

> (v.x, v.y);;

val it : float * float = (6.0,8.0)

> (v.Length, v.Angle);;

val it : float * float = (10.0,0.927295218)

> v.x <- 1.0 ; v.y <- 1.0;;

val it : unit = ()

> (v.Length, v.Angle);;

val it : float * float = (1.414213562,0.7853981634)

Object-oriented Programming in F# (revised 2020-02-12) 20

Object Interface Types

“Abstract” object type declarations, specify only members and their types,
not their implementations

Concrete implementations are specified by separate declarations

By having different concrete implementations implement members

differently, we achieve something similar to virtual methods

Object-oriented Programming in F# (revised 2020-02-12) 21

Example

type Point = { X : float; Y : float }

type Rectangle = Rectangle of (float * float * float * float)

type IShape =

abstract Contains : Point -> bool

abstract Boundingbox : Rectangle

let circle(center:Point, radius:float) =

{ new IShape with

member x.Contains(p:Point) =

let dx = p.X - center.X

let dy = p.Y - center.Y

sqrt(dx**2.0 + dy**2.0) <= radius

member x.Boundingbox =

Rectangle (center.X - radius,center.Y - radius,

2.0*radius,2.0*radius) }

Object-oriented Programming in F# (revised 2020-02-12) 22

let square(center:Point, side:float) =

{ new IShape with

member x.Contains(p:Point) =

let dx = p.X - center.X

let dy = p.Y - center.Y

abs(dx) <= side/2.0 && abs(dy) <= side/2.0

member x.Boundingbox =

Rectangle (center.X - side,center.Y - side,

2.0*side,2.0*side) }

Object-oriented Programming in F# (revised 2020-02-12) 23

Object Expressions

circle and square are functions whose bodies are object expressions

(the “{ new IShape with ...}”)

Object expressions are used to specify implementations for interface types

An object expression must give an implementation for each member of the

interface type

In our example, the functions circle and square provide implementations
of the IShape interface

Object-oriented Programming in F# (revised 2020-02-12) 24

Inheritance

Object interface types can inherit from each other

Thus, hierarchies of such types can be built

The keyword “inherit” specifies inheritance

type Blahonga =

abstract xxx : ...

type FooBar =

inherit Blahonga

abstract yyy : ...

An implementation of FooBar must implement both xxx and yyy

Object-oriented Programming in F# (revised 2020-02-12) 25

Functional Programming Techniques and Object

Expressions

Object expressions can take functions as arguments

In that way, object expressions can be abstracted further

An example:

• A simple interface TextOutputSink defining two methods: for writing a

character, and for writing a string

• A function SimpleOutputSink returning an implementation

(See next page)

Object-oriented Programming in F# (revised 2020-02-12) 26

type TextOutputSink =

abstract WriteChar : char -> unit

abstract WriteString : string -> unit

let SimpleOutputSink(writechar) =

{ new TextOutputSink with

member x.WriteChar(c) = writechar c

member x.WriteString(s) =

for c in s do writechar c }

SimpleOutputSink defines the simple pattern to write a string by writing it
character by character

Object-oriented Programming in F# (revised 2020-02-12) 27

