
Arrays, Sequences, and Lazy Evaluation

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07)

Arrays

F# has arrays

For any F# type ’a, there is a type ’a [] (array with elements of type ’a)

F# arrays provide an alternative to lists

Sometimes arrays are better to use, sometimes lists are better

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 1

Some Properties of F# Arrays

Created with fixed size

Can be multidimensional (won’t be brought up here)

Storage-efficient

Constant lookup time

Mutable (elements can be updated, we’ll bring this up later)

No sharing (different arrays are always stored separately)

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 2

Arrays vs. Lists (1/2)

Arrays Lists

2 5 1

2

51

1

4

1

::

::

::

[]

::

::4

Fixed size, small overhead,

constant time random access,
no sharing

Easy extension (cons), some
memory overhead, access time

grows with depth, sharing
possible

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 3

Arrays vs. Lists (2/2)

Arrays are good when:

• the size is known in advance

• low access times to arbitrary elements are important

• low memory consumption is important

• no or little sharing is possible

Lists are good when:

• It is hard to predict the size in advance

• It is natural to build the data structure successively by adding elements

• there are opportunities for sharing

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 4

Creating and Accessing Arrays

Arrays can be created with a syntax very similar to list notation:

let a = [|1;2;1;5;0|]

a : int []

Creates an integer array of size 5

Accessing element i: a.[i]

a.[0] =⇒ 1 (arrays are indexed from 0)

Accessing a slice (subarray): a.[i..j]

a.[1..3] =⇒ [|2;1;5|]

Empty array: [||]

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 5

Arrays vs. Strings

Elements and slices in arrays are accessed exactly as from strings

However, strings are not arrays of characters!

string 6= char []

Also strings are immutable, whereas arrays of chars are mutable

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 6

An Array Programming Example

Problem: we have a mathematical (numerical) function f . We want to solve

the equation f(x) = 0 numerically

f(x)

0
x

n
0

We assume that: f is increasing on the interval [0, n], that f(0) ≤ 0, that

f(n) ≥ 0, and that f is continuous. Then f(x) = 0 has exactly one solution
on the interval

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 7

A Classical Method: Interval Halving

By successively halving the interval, we can “close in” the value of x for
which f(x) = 0

f(x)

0
x

n
0

We stop when the interval is sufficiently narrow

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 8

Now assume that the function values f(0), f(1), . . . , f(n) are stored as a

table, in an array a with n+ 1 elements

We can then apply interval halving on the table. We define a recursive
function that starts with (0,n) and recursively halves the interval. We stop

when:

• we have an interval (l,u) where a.[l] = 0.0

• we have an interval (l,u) where a.[u] = 0.0

• we have an interval (l,l+1)

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 9

Solution (I)

Two possible results:

• An exact solution is found (a.[i] = 0.0 for some i)

• The solution is enclosed in an interval (l,l+1)

Let’s roll a data type to help distinguish these:

type Answer = Exact of int | Interval of int * int

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 10

Solution (II)

let rec int_halve (a : float []) l u =

if u = l+1 then Interval (l,u)

elif a.[l] = 0.0 then Exact l

elif a.[u] = 0.0 then Exact u

else let h = (l+u)/2 in

if a.[h] > 0.0 then int_halve a l h

else int_halve a h u

Four cases to handle

Note the “elif” syntax, convenient for nested if:s

(For some reason we need to type a explicitly)

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 11

The Array Module

F# has an Array module, similar to the List module

Some standard array functions:

Array.length : ’a [] -> int

Array.append : ’a [] -> ’a [] -> ’a []

Array.zip : ’a [] -> ’b [] -> (’a * ’b) []

Array.filter : (’a -> bool) -> ’a [] -> ’a []

Array.map : (’a -> ’b) -> ’a [] -> ’b []

Array.fold : (’a -> ’b -> ’a) -> ’a -> ’b [] -> ’a

Array.foldBack : (’a -> ’b -> ’b) -> ’a [] -> ’b -> ’b

These work like their list counterparts. The above is just a selection. Notably

no head, tail, or “cons” for arrays

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 12

An Observation on the Array Functions

Many of the array functions have exact counterparts for lists

This is not a coincidence

Arrays and lists just provide different ways to store sequences of values

Many of the functions, like map, fold, filter, etc. are really mathematical
functions on sequences

So for any datatype that stores sequences, these functions can be defined

Software that uses these primitives can therefore easily be modified to use

different data representations

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 13

Abstract Data Types

length
filter
map

fold
.
.
.

List

length
filter
map

fold
.
.
.

Array

length, map, fold etc. provide an interface

It turns List and Array into abstract data types

If the programmer sticks to the interface, then any abstract data type
implementing the interface can be used

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 14

An Example: Computing Mean Values

The mean value of n values x1, . . . , xn is defined as:

(

n∑

i=1

xi)/n

A function to calculate the mean value of the elements in an array of floats:

let mean x = Array.fold (+) 0.0 x/float (Array.length x)

A little home exercise: change mean to calculate the mean value of a list of

floats. Hint: it can be done quickly . . .

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 15

Sequences

F# has a data type for seq<’a> for sequences of values of type ’a

Underneath, this is really the .NET type

System.Collection.Generic.IEnumerable<’a>

In F#, sequences are used:

• as an abstraction for lists and arrays,

• as a compute-on-demand construct, especially for interfacing with the

outside world,

Sequences can be specified through range and sequence expressions

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 16

Range Expressions (1/2)

Range expressions are the simplest form of sequence expression:

{ start .. stop }

Generates a sequence with first element start, last element stop, and

increment one

{ 1 .. 4 } =⇒ seq [1; 2; 3; 4] : seq<int>

{ 1.0 .. 4.0 } =⇒ seq [1.0; 2.0; 3.0; 4.0] : seq<float>

Primarily numerical types, but works for all types whose elements can be

ordered:

{ ’a’ .. ’d’ } =⇒ seq [’a’; ’b’; ’c’; ’d’] : seq<char>

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 17

Range Expressions (2/2)

An increment can also be specified:

{ start .. inc .. stop }

{ 1 .. 2 .. 8 } =⇒ seq [1; 3; 5; 7] : seq<int>

Increments can be negative:

{ 3.1 .. -0.5 .. 0.0 } =⇒
seq [3.1; 2.6; 2.1; 1.6; ...] : seq<float>

(fsi only prints the first four elements of a sequence. Sequences are

computed on demand, more on this later)

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 18

Some Functions on Sequences

F# has a module Seq with functions on sequences. Many of these have
counterparts for lists and arrays. Some examples:

Seq.length : seq<’a> -> int

Seq.append : seq<’a> -> seq<’a> -> seq<’a>

Seq.take : int -> seq<’a> -> seq<’a>

Seq.skip : int -> seq<’a> -> seq<’a>

Seq.zip : seq<’a> -> seq<’b> -> seq<’a * ’b>

Seq.filter : (’a -> bool) -> seq<’a> -> seq<’a>

Seq.map : (’a -> ’b) -> seq<’a> -> seq<’b>

Seq.fold : (’a -> ’b -> ’a) -> ’a -> seq<’b> -> ’a

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 19

Examples:

Seq.map (fun i -> (i,i*i)) { 1 .. 100 } =⇒

seq [(1, 1); (2, 4); (3, 9); (4, 16); ...]

Seq.fold (+) 0 { 1 .. 100 } =⇒ 5050

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 20

Sequence Expressions (1/2)

A rich syntax for defining sequences

All of it is really syntactic sugar: can be done using the basic range
expressions + the functions in Seq. But convenient and easy to understand

A simple class of sequence expressions:

seq { for var in sequence -> expr }

Example:

seq { for i in 1 .. 100 -> (i,i*i) } =⇒

seq [(1, 1); (2, 4); (3, 9); (4, 16); ...]

(Same as Seq.map (fun i -> (i,i*i)) { 1 .. 100 })

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 21

Sequence Expressions (2/2)

An extension:

seq { for pat in sequence -> expr }

Example:

let squares = seq { for i in 1 .. 100 -> (i,i*i) }

seq { for (i,i2) in squares -> (i2 - i) } =⇒

seq [0; 2; 6; 12; ...]

There are a number of other extensions

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 22

Lists, Arrays, and Sequences

’a list and ’a [] are subtypes to seq<’a>

This means that functions taking sequences as arguments can be given lists
or arrays as arguments instead

Examples:

Seq.map (fun x -> x+1) [1; 3; 5] =⇒ seq [2; 4; 6]

Seq.zip [|1; 3; 5|] [| ’a’ ;’b’ ;’c’|] =⇒

seq [(1, ’a’); (3, ’b’); (5, ’c’)]

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 23

Defining Lists and Arrays by Sequence Expressions

Sequence expressions can be used to define lists or arrays

Simply write “[...]” or “[| ... |]” rather than “seq { ... }”

[1 .. 5] =⇒ [1; 2; 3; 4; 5]

[|1 .. 5|] =⇒ [|1; 2; 3; 4; 5|]

Often very convenient for expressing predefined lists or arrays

Another example: converting an array to a list:

let array2list a = [for i in 0 .. Array.length a - 1 -> a.[i]]

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 24

Lazy Evaluation in F#

F# has two main constructs to yield lazy evaluation:

• a function lazy that delays evaluation, and a member .Force() that

forces the evaluation

• sequences, which are computed on demand

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 25

Lazy/Force (1/4)

The lazy function in action (fsi):

> let x = lazy (33 + 12);;

val x : Lazy<int> = <unevaluated>

x obtains a special type Lazy<int>, and is unevaluated.

It is represented by a piece of code that will compute 33 + 12 when called

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 26

Lazy/Force (2/4)

x is evaluated with the .Force() member:

> x.Force();;

val it : int = 45

Subsequent evaluations of x.Force() will return the same value

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 27

Lazy/Force (3/4)

x.Force() evaluates x only the first time it is called

The value is stored, and reused: subsequent calls return the stored value

This becomes visible if we add a side effect:

> let x = lazy (printf "xxx\n"; 33 + 12);;

val x : Lazy<int> = <unevaluated>

> x.Force();;

xxx

val it : int = 45

> x.Force();;

val it : int = 45

The side effect occurs only the first time

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 28

Lazy/Force (4/4)

A comment on lazy and .Force():

It is easy to do small examples with them

However, I found it hard to use them for more interesting things

I do think that the design of F# could be improved as regards laziness

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 29

Computation Expressions

F# has a concept of computation expressions

They can be used to fine-tune the order of evaluation

Sequence expressions are really computation expressions

We will not bring them up further here

See Ch. 12 in the book

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 30

Sequences

Sequences are computed on demand

Only as much as is “asked for” is computed

This means that we can work with very long, or even infinite sequences, as
long as we only use a small part of them

Sequence functions like Seq.take and Seq.tryFind can be used to

select small parts of sequences

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 31

Call by Value vs. Demand-driven Computation (1/2)

Call by value

producer of
data structureconsumer

"I need your data"

"Here is all of it"

producer of
data structureconsumer

Call by demand

"Here they are"

"Now I need these elements"

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 32

Call by Value vs. Demand-driven Computation (2/2)

Let’s compare a list with 10 million elements with a sequence with 10 million

elements

List.tryFind (fun x -> x = 3) [1 .. 10000000]

Call by value. The whole list will be evaluated, then searched for the first
element that has the value 3. The third element is returned

Seq.tryFind (fun x -> x = 3) { 1 .. 10000000 }

Evaluation by demand. Seq.tryFind will ask for elements one at a time,

as it searches through the sequence. Only the three first elements will be
generated, then Seq.tryFind returns the third element

Compare the performance in fsi!

Arrays, Sequences, and Lazy Evaluation (revised 2020-01-07) 33

