
Reactive Programming, and WinForms in F#

Björn Lisper
School of Innovation, Design, and Engineering

Mälardalen University

bjorn.lisper@mdh.se

http://www.idt.mdh.se/˜blr/

Reactive Programming in F# (revised 2018-02-08)

Interaction

So far we’ve seen some simple interaction for F# programs:

• Return a value from an evaluated expression

• Print to the console

• Reading and writing files

But this is very limited. Real interactive systems must be able to

concurrently wait for different inputs, and react to them when they arrive

Example: a GUI with different buttons and mouse, concurrently reading
clicks and mouse coordinates

Reactive programs read such inputs, and react to them

We will give an introduction how to write reactive programs in F#

Reactive Programming in F# (revised 2018-02-08) 1

Events

Inputs can be organised as events

An event is basically a stream of data:

coordinates for a mouse, data representing
key clicks, etc.

A reactive program will typically handle

many events concurrently

time

event

stream
of
data
in
time

Reactive Programming in F# (revised 2018-02-08) 2

Handling Events

An event handler can be connected to an

event

Listens to the stream of data, and performs

some action for each item in the stream

time

event
event
handler

Reactive Programming in F# (revised 2018-02-08) 3

In .NET, an event handler connects to an event by adding itself to the event

Once added, it will receive all data in the stream and can take action

accordingly

Several handlers can be added to the same event

Reactive Programming in F# (revised 2018-02-08) 4

Events in F#

F# has a data type IEvent<’a> for events

Events are first-class citizens just like any other data: can be moved around,
copied, stored in data structures, . . .

Since events are data streams, they are similar to sequences

There is an Event module with functions on events. Some examples:

Reactive Programming in F# (revised 2018-02-08) 5

Some Functions on Events

A selection:

Event.filter : (’a -> bool) -> IEvent<’a> -> IEvent<’a>

Event.map : (’a -> ’b) -> IEvent<’a> -> IEvent<’b>

Event.merge : IEvent<’a> -> IEvent<’a> -> IEvent<’a>

Event.partition : (’a -> bool) -> IEvent<’a> ->

IEvent<’a> * IEvent<’a>

Event.scan : (’a -> ’b -> ’a) -> ’a -> IEvent<’b> ->

IEvent<’a>

Note that some are the same as for sequences (and lists, and arrays)!

The same style of programming can be used for events!

Reactive Programming in F# (revised 2018-02-08) 6

Dataflow Style Programming

The Event functions support a dataflow style of programming, where
functions operate on streams of data:

f... a3 a2 a1 ... b3 b2 b1

Functions can be combined to create new ones:

f... a3 a2 a1 g ... c3 c2 c1

Reactive Programming in F# (revised 2018-02-08) 7

How do the Event Functions Work?

Event.map, Event.filter: as you would expect

Event.merge merges two streams into one, in the order that the elements
arrive:

merge
... a4 a3 a2 a1

... b2 b1
...a4 b2 a3 b1 a2 a1

(Event.)merge is associative, and commutative:

merge e1 (merge e2 e3) = merge (merge e1 e2) e3

merge e1 e2 = merge e2 e1

Merge is useful for joining events, like the clicks from different buttons

Reactive Programming in F# (revised 2018-02-08) 8

Event.partition

Event.partition splits a stream into two, depending in the outcome of a
predicate:

... a5 a4 a3 a2 a1
T F T T F

partition
... a5 a3 a2

... a4 a1

Reactive Programming in F# (revised 2018-02-08) 9

Event.scan

There is a function List.scan on lists. It is a version of fold that computes

the list of all partial “sums” rather than just the final sum, for instance:

List.scan (+) 0 [1;2;3] = [0;1;3;6]

Event.scan does the same on events:

scan (+) 0 ... 6 3 1 0... 3 2 1

Reactive Programming in F# (revised 2018-02-08) 10

Event Handling in F#

In F#, event handlers are functions. The function is applied to each element
in the stream, in order (much like map)

The event handler is used only for its side effect! Must have type of form

’a -> unit

Event handlers are added to events using the Add member (OO part of F#):

e.Add(h)

Adds event handler h to event e

Reactive Programming in F# (revised 2018-02-08) 11

Event Handler, Simple Example

Adding an event handler to an event e of type IEvent<int>: the handler
prints the elements of the event on the console as they appear:

e.Add(fun x -> printf "%d\n" x)

Print the elements in e incremented by one:

(e |> Event.map (fun x -> x+1)).Add(fun x -> printf "%d\n" x)

Illustrates how the dataflow programming style is supported by the forward

pipe operator

Reactive Programming in F# (revised 2018-02-08) 12

Event Handler Example Revisited

An alternative to the Add member:

Event.add : (’a -> unit) -> IEvent<’a> -> unit

A function that adds an event handler to an event

e |> Event.add h is equivalent to e.Add(h)

Goes well with the dataflow style, for instance:

e |> Event.map (fun x -> x+1) |> Event.add (fun x -> printf "%d\n" x)

map adde

Reactive Programming in F# (revised 2018-02-08) 13

Windows Forms

GUI’s is an important instance of reactive systems

They should respond to user inputs: clicks, mouse moves, keystrokes, taps

on the screen, . . .

Windows Forms is a GUI class library that is part of .NET

Module System.Windows.Forms

Supports event-based GUI user interaction

GUI’s using Windows Forms can be programmed in F#

We will do some simple examples here

Reactive Programming in F# (revised 2018-02-08) 14

Windows Forms (II)

In Windows Forms, each GUI component is represented by an object:

• A window

• A button

• Etc.

The object holds the representation: position, style, fill colour, text(s), etc.

Reactive Programming in F# (revised 2018-02-08) 15

Hello world

Press me!

Window
object

Button
object

Window

Reactive Programming in F# (revised 2018-02-08) 16

Windows Forms and Events

Each Windows Forms object holds a number of events, to which event
handlers can add themselves

For instance, each button object has a “Click” event

A window object has a Click event, and a MouseMove event

Etc.

Reactive Programming in F# (revised 2018-02-08) 17

Click

Click

Event
handler

Event
handler

Event
handler

Event
handler

Hello world

Press me!

Window
object

Button
object

Window

MouseMove

Reactive Programming in F# (revised 2018-02-08) 18

A Simple Example

open System.Windows.Forms // Module for .NET GUI handling

open System.Drawing // Namespace for colors etc.

let form = new Form(Text="Hello World",Visible=true)

// Create a new window, and make it visible

let button = new Button(Text="Press here!")

// Create a new button

button.BackColor <- Color.Red

button.Size <- new Size(50,50)

button.Location <- new Point(25,25)

// make it red, size 50x50 pixels, offset (25,25) pixels

button.Click.Add(fun _ -> printfn "You pressed me!!")

// add a handler for the button’s "Click" event

Reactive Programming in F# (revised 2018-02-08) 19

form.Controls.Add(button)

// add the button to the window

form.MouseMove.Add

(fun args -> printfn "Mouse, (x,y) = (%A,%A)" args.X args.Y)

// add a handler for the window "MouseMove" event

let e = form.MouseMove |> Event.filter (fun args -> args.X > 100)

|> Event.map (fun args -> args.X + args.Y)

// Define a new event, created from the MouseMove event

e.Add (fun n -> printfn "Mouse sum = %d" n)

// Add an event handler to our new event

Application.Run(form) // Finally start the execution of the window

Reactive Programming in F# (revised 2018-02-08) 20

Observables

The Event module has a problem. Sometimes the use of its functions will
cause memory leaks

A problem if to be used in real applications

The Observable module provides an alternative implementation of events

that does not suffer from memory leaks

Observables are just like events, but with type IObservable<’a>

All Event functions have Observable counterparts

In most applications events can be replaced by observables right off

Reactive Programming in F# (revised 2018-02-08) 21

An Example with Observables

A window with a counter, and an increment (+1) and a decrement (-1) button:

Increment

Decrement
Count: 9

A dataflow design for the solution:

Increment map (always 1)

map (always −1)

merge scan (+) 0 add(...)

Decrement

Idea: turn click events into streams of 1’s and -1’s, sum them successively
with scan, update the counter display for each new sum

Reactive Programming in F# (revised 2018-02-08) 22

An Example with Observables (II)

// Set upp buttons, label (sketch)

let btnUp = new Button(...)

let btnDown = new Button(...)

let lbl = new Label(...)

//helper function

let always x = (fun _ -> x)

//event processing code

let incEvent = btnUp.Click |> Observable.map (always 1)

let decEvent = btnDown.Click |> Observable.map (always -1)

Observable.merge incEvent decEvent

|> Observable.scan (+) 0

|> Observable.add (fun sum -> lbl.Text <- sprintf "Count: %d" sum)

Reactive Programming in F# (revised 2018-02-08) 23

A non-GUI Example

A program that monitors a user’s “Download” folder, and unpacks any new
archive files

Uses an event belonging to a “FileSystemWatcher” object

This event is triggered each time there is some change to the contents in a
specified folder

The program monitors this event, retrieves information which changes are

due to new archive files, and unpacks exactly these files (ignoring other
changes)

Code on next page

Reactive Programming in F# (revised 2018-02-08) 24

// Monitors files in the user’s Downloads folder

let fileWatcher = new FileSystemWatcher(

Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.UserProfile), "Downloads"))

// Checks if a file is archived or not

let isArchived(fse:FileSystemEventArgs) =

let archive = FileAttributes.Archive

(File.GetAttributes(fse.FullPath) &&& archive) = archive

// Event handler that unpacks a file using the unrar command

let unpack(fse:FileSystemEventArgs) =

let command = "/c unrar e " + fse.FullPath.ToString()

System.Diagnostics.Process.Start("CMD.exe", command) |> ignore

// The program’s data flow

fileWatcher.Changed // changes to Download folder

|> Observable.filter isArchived // ignore those that are not arrivals of archives

|> Observable.add unpack // unpack archives

Reactive Programming in F# (revised 2018-02-08) 25

Asynchronous Workflows

The dataflow paradigm provides a nice and clean model for event processing

However, sometimes a closer control of the event processing is needed

Asynchronous workflows provide this

Gives detailed control over the event handling, including the ability to wait for
the arrival of new elements in event streams without blocking other activities

This is of course crucial. An application cannot freeze while waiting for some

input to appear

Reactive Programming in F# (revised 2018-02-08) 26

Async Blocks

Asynchronous workflows are created using Async blocks:

async { some expression }

A kind of computation expression

Specifies in detail when acticities will start, when to wait for inputs (and then

whether to block other activities or not), etc.

Reactive Programming in F# (revised 2018-02-08) 27

Non-blocking Evaluation

Inside an async block, a special form of let declaration can be used:

let! var = expr

expr must be an asynchronous computation. The execution of the
declaration will execute expr in a background thread, thus not blocking the

main thread. When expr completes, var is bound to the result

Obviously a good thing to use when the evaluation of expr involves waiting

for the next element in an event stream!

return! expr

Execute the asynchronous computation expr, and return the result

Reactive Programming in F# (revised 2018-02-08) 28

An Example

A simple program that counts mouse clicks one by one, using an

asynchronous workflow

The elements in the event stream are processed one by one. Once an
element is processed, recursion is used to process the rest of the elements

Async.AwaitObservable(e) is an asynchronous workflow that waits for

the next element in event stream e, and returns it when it arrives

Async.StartImmediate(a) starts the asynchronous workflow a on the
current thread

Reactive Programming in F# (revised 2018-02-08) 29

Example Code

let form, label = new Form(...), new Label(...)

let rec loop(count) = async{

let! args = Async.AwaitObservable(label.MouseDown)

label.Text <- sprintf "Clicks: %d" count

return! loop(count + 1) }

do

Async.StartImmediate(loop(1))

Application.Run(form)

Reactive Programming in F# (revised 2018-02-08) 30

Some Observations

Async block with Async.AwaitObservable vs. dataflow for events is

similar to explicit recursion with head/tail vs. builtin higher-order functions for
lists

In both cases a choice between explicit processing element by element, and
processing using predefined function blocks

In the example, the loop function will recurse indefinitely

This is intentional! The program is still responsive since each step in the

recursion includes interaction. Reactive programs are typically designed to
run forever

In loop, state is maintained through the count argument. This provides a
side effect-free way to maintain state

Reactive Programming in F# (revised 2018-02-08) 31

