POLITECNICO MILANO 1863

The Twin-in-the-loop approach

for vehicle dynamics estimation and control

Mälardalen University, Västerås, Sweden March 21, 2023

Simone Formentin

Outline

Twin-in-the-Loop control

Twin-in-the-Loop estimation

Conclusions

Outline

Twin-in-the-Loop control

Twin-in-the-Loop estimation

Conclusions

Problem statement

Vehicle dynamics systems - design process

Traditional framework

- Vehicle dynamics systems development goes through many steps
- Many experiments to achieve the final controller [1];

Vertical dynamics [2]

`Lateral dynamics [4]

End-of-Line (EoL) tuning: most **time-consuming** task

M. Tanelli, G. Panzani, S.M. Savaresi and C. Pirola, Transmission control for power-shift agricultural tractors: Design and end-of-line automatic tuning, *Mechatronics*, 2011
 G. Savaia, Y. Sohn et al., Experimental automatic calibration of a semi-active suspension controller via Bayesian Optimization, *Control Engineering Practice*, 2021
 D. Tavernini, F. Vacca et al., An explicit nonlinear model predictive ABS controller for electro-hydraulic braking systems, *IEEE Transactions of Industrial Electronics*, 2020
 S. Xu and H. Peng, Design, Analysis and Experiments of Preview Path Tracking Control for Autonomous Vehicles, *IEEE Transactions on Intelligent Transportation Systems*, 2020

Framework and research goal

Problem statement – Twin-in-the-Loop control

Vehicle simulators currently used in development and prototyping stages [*].

- Very accurate digital twins (DT) of the vehicle;
- Already available (and calibrated) to car manufacturers.

Unexplored potential?

What if the digital twin can be used **on-board** and in **real-time**?

[*] E. Kutluay and H. Winner, Validation of vehicle dynamics simulation models – a review, Vehicle System Dynamics, 2014

Control design flow – shifting the paradigm

Problem statement – Twin-in-the-Loop control

Traditional framework

- Vehicle dynamics systems development goes through many steps
- Many experiments to achieve end-of-line tuning [2]

Twin-in-the-Loop framework

- Digital twin directly used on-board to control the vehicle;
- No need for controller fine tuning simple compensator added

Control design flow – shifting the paradigm

Problem statement – Twin-in-the-Loop control

Main features:

- C_{δ} possibly very **simple** structure;
- High generalization capabilities;
- Control objectives separation \rightarrow
 - \widetilde{u} nonlinear dynamics handling;
 - u_δ noise compensation/ "small signal" control

Twin-in-the-Loop framework

- Digital twin directly used on-board to control the vehicle;
- No need for controller fine tuning simple compensator added

Filter design flow – shifting the paradigm

Problem statement – Twin-in-the-Loop estimation

Goal : development of a **full vehicle dynamics observer**. We are interested in:

- State Filtering
- Output Smoothing

Filter design flow – shifting the paradigm

Problem statement – Twin-in-the-Loop estimation

Goal : development of a **full vehicle dynamics observer**. We are interested in:

- State Filtering
- Output Smoothing

 \Re

Twin-in-the-Loop estimation

Conclusions

Problem definition – model predictive controller

Problem definition – actuator model

Actuator model:

- Second order transfer function + nonlinearities (rate limiter and saturation);
- ldentified from experimental data.

Problem definition – vehicle model

Vehicle model:

- High-fidelity Car-Real-Time model of Ferrari F171;
- We introduce model errors in the "real car".

 - Unmodeled concentrated masses.

 λ_{ij}

• $\mu_s = 1 \rightarrow \text{nominal curve};$

VEHICLE

 T_{ij}^{cmd}

- $\mu_s = 0.7 \rightarrow$ "pseudo" wet asphalt;
- $0.7 < \mu_s < 1 \rightarrow$ low grip asphalt;
- $\mu_s > 1 \rightarrow$ high grip asphalt.

Problem definition – vehicle model

6000

 $\sum_{\substack{k=2\\ k \neq 2000}}^{4000}$

0

0

Uncertainty

Vehicle model:

- High-fidelity Car-Real-Time model of Ferrari F171;
- We introduce model errors in the "real car".
 - Friction model perturbation;

Uncertainty

• Unmodeled concentrated masses.

Pacejka model

 $F_{x} = \cos\left(C_{x\alpha_{t}} \arctan\left(B_{x\alpha_{t}}\alpha_{t}\right)\right)F_{x0}\cdot\boldsymbol{\mu}_{s}$

 $F_{x0} = D_x \sin[C_x \cdot c_s \cdot \arctan(B_x \kappa - E_x (B_x \kappa - \arctan(B_x \kappa)))]$

 $\boldsymbol{c}_{\boldsymbol{s}}$

 $F_z = \frac{M_{veh}g}{4}, \alpha_t = 0, \gamma = 0$

0.5

 λ [-]

Shape factor scaling uncertainty $c_s \in [0.9, 1.1]$:

• Peak force abscissa is modified.

Problem definition – vehicle model

Vehicle model:

- High-fidelity Car-Real-Time model of Ferrari F171;
- We introduce model errors in the "real car".
 - Friction model perturbation;
 - Unmodeled concentrated masses.

Load transfer straight braking depends mostly on COG longitudinal position (cg_x) and vertical position (cg_z) \rightarrow

Unmodeled masses in the real vehicle to realistically perturbate these parameters.

CRT directly accounts for inertia and COG position variations!

$$F_z^f = \frac{Mgl_r}{l_f + l_r} - \frac{Mh}{l_f + l_r} \dot{v}_x \qquad F_z^f = \frac{Mgl_r}{l_f + l_r} - \frac{Mh}{l_f + l_r} \dot{v}_x$$

Nominal model \rightarrow driver ($m_d = 75 \ kg$)

• Total mass $M_{tot} = 1466 \ kg$

Perturbated model \rightarrow passenger ($m_p = 75 \ kg$) + trunk load ($m_t^l = 90 \ kg$, $m_t^r = 30 \ kg$)

• Total mass $M_{tot} = 1661 \, kg \, (+11\%)$

Problem definition – sensor model and noise

Sensor/noise model:

- MPC uses slips and longitudinal speed/acceleration information;
- These signals are actually measured or estimated \rightarrow disturbances introduction.

Noise characterization - slip computed from ω_{ij}	
and $v_{x,ij} \rightarrow$	

- ω_{ij} measured through encoders sinusoidal noise + random noise;
- $v_{x,ij}$ estimated through state observers low frequency noise;

MPC also requires a_x measurements \rightarrow

a_x measured via inertial measurement units – high frequency noise.

 $a_x^n = a_x + n_a, \qquad n_a \sim WN(0, \sigma_a^2).$

Noise effect on slips:

 $\lambda_{ii}^n = \lambda_{ii} + n_{\lambda}^{ij}(v_{x,ii}^n, \omega_{ii}^n)$

Problem definition – sensor model and noise – mid noise

- ω_{ii} measured through encoders *sinusoidal* noise + random noise.
- $v_{x,ij}$ estimated through state observers *low* frequency noise;

MPC also requires a_x measurements \rightarrow

 a_x measured via inertial measurement units – high frequency noise.

[+] G. Panzani, M. Corno and S. M. Savaresi, "On the Periodic Noise Affecting wheel Speed Measurement", in 16th IFAC Symposium on System Identification, 2012

Active braking TiL-Control

TiL-C braking control:

- Nonlinearity of slip dynamics managed by digital-twin loop;
- **Proportional-Integral compensator** C_{δ} added to guarantee stability.

Case study – active braking control Active braking TiL-Control

- Vehicle **tests are expensive** need for an **efficient** algorithm;
 - Unknown underlying dynamics need for a black-box algorithm.
- \rightarrow Bayesian Optimization.

•

Bayesian optimization

Goal: to solve the optimization problem: $\min_{\theta} J(\theta)$

Setup: availability to collect samples of the unknown loss function J, i.e. $J(\theta_1), J(\theta_2), \dots, J(\theta_N)$

Bayesian Optimization (BO) is not only an optimization algorithm, rather it can be considered a statistical learning algorithm.

- BO iteratively updates a Bayesian surrogate model of $J(\theta)$ (Gaussian model with prior mean and covariance function)
- The measurements θ_i are **actively** selected to favor points with estimated good performance (exploitation) and/or high variance (exploration)

Bayesian optimization

Bayesian optimization

The GP provides the probability distribution of the function for each parameter. This probability is used to define an acquisition function, e.g.,

Bayesian optimization

Steps of BO: for $i = 1, 2, \dots i_{max}$

- **① Execute** experiment with θ_i , measure $J_i = J(\theta_i) + e_i$
- **2 Update** the GP model $\theta \to J(\theta)$ with (θ_i, J_i)
- **3 Construct** acquisition function $A(\theta)$
- Maximize $A(\theta)$ to obtain next query point θ_{i+1}

Bayesian optimization

iteration 20

Controller tuning setup

Simulator (ideal case):

- Noiseless signals;
- Perfect model knowledge.

```
Virtual closed-loop
experiments
```


 $\tilde{\lambda}$ - reference behaviour

Controller tuning setup

Simulator (ideal case):

- Noiseless signals;
- Perfect model knowledge.

Virtual closed-loop experiments

Real vehicle:

- Noisy signals;
- Perturbated model (e.g. additional masses).

MPC tuning (ideal)
 λ - reference behaviour

MPC tuning

Closed-loop experiments on real vehicle \rightarrow MPC prediction model fine tuning

 $\dot{\lambda} = \frac{1-\lambda}{v_x} a_x + \frac{R_{wh}}{J_{wh}v_x} T_b^{act} \text{ (front/rear wheels)}$

 $\theta_{mpc} = \begin{bmatrix} J_f & J_r & R_{wh}^f & R_{wh}^r \end{bmatrix}$

Prediction error minimization: $\min_{\theta_{mpc}} J_{pred} = \sum_{i=fl, fr, rl, rr} \frac{rms(\lambda_i^{mpc} - \lambda_i)}{4}$

Controller tuning – from simulator to real vehicle

TiL tuning

Closed-loop experiments on real vehicle → TiL-C parameters tuning

$$C_{\delta}(z) = \frac{k_p}{1 + 2T_i/T_s} \cdot \frac{z+1}{z + \frac{T_s - 2T_i}{T_s + 2T_i}} \quad \text{(front/rear wheels})$$

$$\Theta_{\mathrm{T}iL} = \begin{bmatrix} k_p^f & k_p^r & T_i^f & T_i^r \end{bmatrix}$$

Reference tracking error minimization:

$$\min_{\theta_{TiL}} J_{\lambda} = \sum_{i=fl,fr,rl,rr} \frac{rms(\tilde{\lambda}_i - \lambda_i)}{4}$$

Controller tuning setup – nominal approach

$$\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta, \Delta)$$

Nominal optimization/tuning approach:

• High performance on $\Delta = \Delta^*$ BUT lower robustness.

Tire model uncertainty $\Delta \rightarrow$ • $F_x = F_x(\lambda, F_z, \alpha_t, \gamma, \Delta);$ • $\Delta = [\mu_s, c_s] \in \mathbb{R}^2;$ • $\mu_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2), c_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2);$ • $\Delta^{(1)}, \dots, \Delta^{(M)} \rightarrow$ uncertainty realizations.

Friction curve ensemble

Controller tuning setup – robust approach

$$\theta^* = \underset{\theta}{\operatorname{argmin}} J(\theta, \Delta)$$

Nominal optimization/tuning approach:

• High performance on $\Delta = \Delta^*$ BUT lower robustness.

Robust optimization/tuning approach:

- More conservative on $\Delta = \Delta^*$ BUT higher robustness;
- Can we achieve probabilistic robustness guarantees?

Tire model uncertainty $\Delta \rightarrow$ • $F_x = F_x(\lambda, F_z, \alpha_t, \gamma, \Delta);$ • $\Delta = [\mu_s, c_s] \in \mathbb{R}^2;$ • $\mu_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2), c_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2);$ • $\Delta^{(1)}, \dots, \Delta^{(M)} \rightarrow$ uncertainty realizations.

Friction curve ensemble

Controller tuning setup – robust approach

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \quad \gamma_{est}(\theta, \Delta^{(1)}, \dots, \Delta^{(M)})$$

subject to:

 $\gamma_{est} \ge J(\theta, \Delta^{(j)}), \quad j = 1, ..., M \text{ (chance constraints)}$

Tire model uncertainty $\Delta \rightarrow F_x = F_x(\lambda, F_z, \alpha_t, \gamma, \Delta);$ • $\Delta = [\mu_s, c_s] \in \mathbb{R}^2;$ • $\mu_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2), c_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2);$ • $\Delta^{(1)}, \dots, \Delta^{(M)} \rightarrow$ uncertainty realizations.

Randomized analysis for probabilistic worst-case performance (RAWC) [#]:

Consider probability levels $p^* \in (0,1)$ and $\delta \in (0,1) \rightarrow$

- $\Pr{\Pr{J(\Delta) \le \gamma_{est}} \ge p^*} \ge 1 \delta;$
- γ_{est} constructed on *M* realizations of Δ ;

• A possibility is
$$\gamma_{est} = \max_{i=1,\dots,M} J(\theta, \Delta^{(i)})$$
, and $M = \frac{\log(\delta^{-1})}{\log(p^{*-1})}$ (log-over-log bound).

[#] R. Tempo, E. W. Bai and F. Dabbene, Probabilistic robustness analysis: explicit bounds for the minimum number of samples, *Proceedings of 35th IEEE Conference on Decision and Control*, 1996.

Controller tuning setup – robust approach

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \quad \gamma_{est}(\theta, \Delta^{(1)}, \dots, \Delta^{(M)})$$

subject to:

 $\gamma_{est} \ge J(\theta, \Delta^{(j)}), \quad j = 1, ..., M$ (chance constraints)

Randomized analysis for probabilistic worst-case performance (RAWC) [#]:

Consider probability levels $p^* \in (0,1)$ and $\delta \in (0,1) \rightarrow$

- $\Pr{\Pr{J(\Delta) \le \gamma_{est}} \ge p^*} \ge 1 \delta;$
- γ_{est} constructed on *M* realizations of Δ ;

Tire model uncertainty $\Delta \rightarrow$ • $F_x = F_x(\lambda, F_z, \alpha_t, \gamma, \Delta);$ • $\Delta = [\mu_s, c_s] \in \mathbb{R}^2;$ • $\mu_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2), c_s \sim N(\mu_{\mu_s}, \sigma_{\mu_s}^2);$ • $\Delta^{(1)}, \dots, \Delta^{(M)} \rightarrow$ uncertainty realizations.

Remarks:

- In practice, we are optimizing against the probabilistically-guaranteed worstcase scenario.
- Once $\theta_{\mathcal{B}}$ is found, we can **test its robustness** against a **new realization** of Δ .

POLITECNICO MILANO 1863

• A possibility is
$$\gamma_{est} = \max_{i=1,...,M} J(\theta, \Delta^{(i)})$$
, and $M = \frac{\log(\delta^{-1})}{\log(p^{*-1})}$ (log-over-log bound).

[#] R. Tempo, E. W. Bai and F. Dabbene, Probabilistic robustness analysis: explicit bounds for the minimum number of samples, *Proceedings of 35th IEEE Conference on Decision and Control*, 1996.

Simulation Results

Test definition

- Optimization experiment:
- Straight braking maneuver (SWA = 0 deg):
 - 1. Coasting down;
 - 2. Panic braking (full brake).
- Pulse wave reference to better excite slip dynamics.
- Test experiment:
- Constant slip reference is considered.

Simulation results

Nominal vehicle/noisy data – testing experiment

Speed/acceleration (TiL vs bench)

 $SNR \approx 4$

35

Simulation results

Nominal vehicle/noisy data – testing experiment

 $SNR \approx 4$

10
Nominal vehicle/noisy data – testing experiment

Commanded torques (TiL vs bench)

 $SNR \approx 4$

0

Perturbated vehicle/noiseless data – testing experiment

Speed/acceleration (TiL vs bench)

 $SNR \approx \infty$

Perturbated vehicle/noiseless data – testing experiment

 $SNR \approx \infty$

Perturbated vehicle/noiseless data – testing experiment

$SNR \approx \infty$

0.5

 λ [-]

-Nominal

1

6000

0

0

Perturbated vehicle/noisy data – testing experiment

 $SNR \approx 4$

What if we **test noisy-calibrated** controllers with small unmodeled masses? Intrinsic robustness to masses.

Perturbated vehicle/noiseless data – testing experiment

Robustness to friction variation

Results – TiL robust control tuning

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \quad \gamma_{est}(\theta, \Delta^{(1)}, \dots, \Delta^{(M)})$$

subject to:

$$\gamma_{est} \ge J_{\lambda}(\theta, \Delta^{(j)}), \qquad j = 1, \dots, M$$

$$\Pr\{J(\Delta) \le \gamma_{est}\} = p_{est} \approx \sum_{i=1}^{M_{test}} \frac{\left[J(\Delta^{(i)}) \le \gamma_{est}\right]}{M_{test}} = 0.8506 > p^*$$

The found solutions is robust, satisfying the probabilistic guarantees out-of-sample.

Twin-in-the-Loop control

Twin-in-the-Loop estimation

Conclusions

Introduction

Twin-in-the-Loop Filtering Paradigm - Block Diagram

Goal : development of a **full vehicle dynamics observer**. We are interested in:

- State Filtering
- Output Smoothing

Introduction

Twin-in-the-Loop Filtering Paradigm - Block Diagram

We will use a linear time-invariant correction law:

Introduction

TIL Filtering – Dimensionality Issue

In our setup we have:

• $n_x = 28$ states

• $n_y = 10$ measurements available

We would like to design an **output error correction** law:

 $\Delta x = K \Delta y$

Where:

- Δx : state perturbation
- Δy : output error
- $K \in \mathbb{R}^{n_x \times n_y}$: correction matrix

Û

280 tuning parameters!

State variables (1)	
Chassis X-Position	p_{χ}
Chassis Y-Position	p_y
Chassis Z-Position	p_z
Roll-Angle	θ
Pitch-Angle	φ
Yaw-Angle	ψ
Chassis Longitudinal Speed (front-ground)	v _x
Chassis Lateral Speed (front-ground)	vy
Chassis Vertical Speed (front-ground)	v _z
X-Angular Speed	ωχ
Y-Angular Speed	ω _y
Z-Angular Speed	ω
FL Suspension Stroke	S _{fl}
FR Suspension Stroke	S _{fr}
RL Suspension Stroke	S _{rl}
RR Suspension Stroke	S _{rr}
FL Suspension Stroke Rate	ṡ _{fl}
FR Suspension Stroke Rate	ṡ _{fr}
RL Suspension Stroke Rate	İsrl
RR Suspension Stroke Rate	\$ _{rr}

State variables (2)	
FL Wheel Angle	Θ_{fl}
FR Wheel Angle	Θ_{fr}
RL Wheel Angle	Θ_{rl}
RR Wheel Angle	Θ_{rr}
FL Wheel Speed	ω_{fl}
FR Wheel Speed	ω_{fr}
RL Wheel Speed	ω _{rl}
RR Wheel Speed	ω_{rr}

Measured outputs	
X-Angular Speed	ω_{χ}^{m}
Y-Angular Speed	ω_y^m
Z-Angular Speed	ω_z^m
FL Wheel Speed	ω_{fl}^m
FR Wheel Speed	ω_{fr}^m
RL Wheel Speed	ω_{rl}^m
RR Wheel Speed	ω_{rr}^m
Longitudinal Acceleration	a_x^m
Lateral Acceleration	a_y^m
Vertical Acceleration	a_z^m

Optimization Problem Statement

Problem: time consuming simulations \rightarrow gridding and gradient based methods would take years to converge, even with BO

PROBLEM! *K* might have **hundreds of parameters**, while BO can optimize only a handful

Dimensionality reduction needed

Case Study Simplified Architecture

Let us consider a simplified case study.

Corrected states:

- v_x • ω_{fl} } Longitudinal dynamics
- ω_{rr} J
 ω_z > Lateral dynamics

Measured outputs:

- *w_{fl}*
- ω_{rr}
- ω_z

The **correction rule** becomes:

$$\begin{bmatrix} \Delta x_{v_{x}} \\ \Delta x_{\omega_{z}} \\ \Delta x_{\omega_{fl}} \\ \Delta x_{\omega_{rr}} \end{bmatrix} = K \cdot \begin{bmatrix} \Delta y_{\omega_{z}} \\ \Delta y_{\omega_{fl}} \\ \Delta y_{\omega_{rr}} \end{bmatrix} \quad \text{where} \quad K = \begin{bmatrix} k_{\omega_{z}v_{x}} & k_{\omega_{fl}v_{x}} & k_{\omega_{rr}v_{x}} \\ k_{\omega_{z}\omega_{z}} & k_{\omega_{fl}\omega_{z}} & k_{\omega_{rr}\omega_{z}} \\ k_{\omega_{z}\omega_{fl}} & k_{\omega_{fl}\omega_{fl}} & k_{\omega_{rr}\omega_{fl}} \\ k_{\omega_{z}\omega_{rr}} & k_{\omega_{fl}\omega_{rr}} & k_{\omega_{rr}\omega_{rr}} \end{bmatrix}$$

Only 12 parameters!

5

Case Study Optimization Setup

Optimization setup:

- We choose a dynamic training dataset (both lateral and longitudinal dynamics are excited)
- Run **1000 iterations** (500 of which are random initial points)
- Validate the result on a different lap

Case Study

Performance optimization problem

To tune the parameters in we will solve the following optimization problem:

Lateral dynamics tracking $\begin{array}{c} \underset{k_{i,j}}{\min} rms(\omega_z - \widehat{\omega}_z) + rms(\nu_x - \widehat{\nu}_x) \\ \text{s.t.:} \quad k_{i,j} \in [\underline{k}_{i,j}, \overline{k}_{i,j}], \quad \forall i = 1, \dots, n_x, \quad j = 1, \dots, n_y \end{array}$

How many BO iterations? Optimizing all 12 parameters would take months to converge... If we perform 1000 iterations \rightarrow impossible to find a converging solution in a reasonable time!

Case Study Dimensionality reduction in Twin-in-the-loop estimation

We will discuss three possible solutions:

- 1. Model-based dimensionality reduction
- 2. Dimensionality reduction based on supervised learning
- 3. Dimensionality reduction based on **unsupervised learning**

Case Study Dimensionality reduction in Twin-in-the-loop estimation

We will discuss three possible solutions:

- 1. Model-based dimensionality reduction
- 2. Dimensionality reduction based on **supervised learning**
- 3. Dimensionality reduction based on **unsupervised learning**

Dimensionality Reduction

Model-based reduction: reduce the number of parameters a-priori, thanks to the physical knowledge on the system.

We will remove the following parameters:

- 1) $k_{\omega_z \omega_{fl'}} k_{\omega_z \omega_{rr'}} k_{\omega_z v_{x'}} k_{\omega_{fl} \omega_{z'}} k_{\omega_{rr} \omega_z} \rightarrow \text{optimization with 7 parameters}$
- 2) $k_{\omega_{fl}\omega_{rr'}} k_{\omega_{rr}\omega_{fl}} \rightarrow \text{optimization with 5 parameters}$
- 3) $k_{\omega_{fl}v_{x'}} k_{\omega_{rr}v_{x}} \rightarrow \text{optimization with 3 parameters}$

Finally, we optimize the remaining parameters.

Validation #1 – 12 Parameters

Validation #2 – 7 Parameters

Validation #3 – 5 Parameters

Validation #4 – 5 Parameters

Validation comparison - Zoom

We can now compare a smaller section of the validation lap:

- 12 Parameters: very noisy
- 7 and 5 parameters: much smoother
- 3 parameters: smooth but inaccurate

Validation Comparison

Overall conclusions:

- If the number of **parameters** is too **high**:
 - No convergence
 - Noisy and unreliable solution
 - Computationally heavy
 - No robustness
- If the number of **parameters** is too low:
 - Solution is too smooth
 - Inaccurate solution

Case Study Dimensionality reduction in Twin-in-the-loop estimation

We will discuss three possible solutions:

- 1. Model-based dimensionality reduction
- 2. Dimensionality reduction based on supervised learning
- 3. Dimensionality reduction based on **unsupervised learning**

Automated Design of the Observer Structure

Three-step procedure:

1) We sort the parameters by importance by solving the following optimization problem:

2) Select a threshold δ to remove the least important parameters:

 $\begin{cases} \tilde{k}_{i,j} \geq \delta & \rightarrow & \text{keep parameter} \\ \tilde{k}_{i,j} < \delta & \rightarrow & \text{remove parameter} \end{cases}$

3) Run the **performance optimization** on the remaining parameters

Structure Optimization – 12 Parameters

We can now run the structure optimization and see what are the most important parameters:

Automated Design Procedure

We will choose 3 values for δ and get 3 optimizations, with respectively 8, 6, 4 parameters:

$$\delta = 0.05 \qquad \delta = 0.1 \qquad \delta = 0.4$$

$$K = \begin{bmatrix} k_{\omega_z v_x} & k_{\omega_{fl} v_x} & k_{\omega_{rr} v_x} \\ k_{\omega_z \omega_z} & k_{\omega_{fl} \omega_z} & k_{\omega_{rr} \omega_z} \\ k_{\omega_z \omega_{rr}} & k_{\omega_{fl} \omega_{rr}} & k_{\omega_{rr} \omega_{rr}} \end{bmatrix} \qquad K = \begin{bmatrix} k_{\omega_z v_x} & k_{\omega_{fl} v_x} & k_{\omega_{rr} v_x} \\ k_{\omega_z \omega_z} & k_{\omega_{fl} \omega_z} & k_{\omega_{rr} \omega_z} \\ k_{\omega_z \omega_{rr}} & k_{\omega_{fl} \omega_{rr}} & k_{\omega_{rr} \omega_{rr}} \end{bmatrix} \qquad K = \begin{bmatrix} k_{\omega_z v_x} & k_{\omega_{fl} v_x} & k_{\omega_{rr} v_x} \\ k_{\omega_z \omega_r} & k_{\omega_{fl} \omega_z} & k_{\omega_{rr} \omega_r} \\ k_{\omega_z \omega_{rr}} & k_{\omega_{fl} \omega_{rr}} & k_{\omega_{rr} \omega_{rr}} \end{bmatrix} \qquad K = \begin{bmatrix} k_{\omega_z v_x} & k_{\omega_{fl} \omega_z} & k_{\omega_{rr} \omega_z} \\ k_{\omega_z \omega_r r} & k_{\omega_{fl} \omega_r} & k_{\omega_{rr} \omega_{rr}} \end{bmatrix}$$

$$Deleted parameters$$

$$\bullet \text{ Almost all parameters involving } \omega_z \text{ are removed} \qquad \bullet \text{ Almost all parameters involving } \omega_z \text{ are removed} \qquad \bullet \text{ Wheel cross correlations are removed} \qquad \bullet \text{ Any correction for } v_x \text{ is }$$

removed

All validations

Validation comparison - Zoom

We can now compare a smaller section of the validation lap:

- 12 Parameters: very noisy
- 7 and 5 parameters: much smoother
- 3 parameters: smooth but inaccurate

Validation Comparison

The **same conclusions** of the previous case can be also drawn in this case:

- Increasing too much the number of parameters leads to noisy estimates and not converging solutions
- Decreasing too much the number of parameters leads to solutions which are too smooth and lose information
- The correct number of parameter is most probably 8-6

Principal Component Analysis

To improve the v_x estimate, we can **add the** a_x **measurement**. In this way:

All validations

VALIDATION DATASET:

- 16→12 Params with PCA
- 12 Params (original)

Unsupervised reduction:

- Better average result
- Larger variance
- Higher comp. cost
- More unpredictable

Validation comparison - Zoom

We can now compare a smaller section of the validation lap:

- in terms of v_x the datasets seem to be quite similar
- In terms of ω_z the PCA optimization performs worse

Conclusions

Model-based VS supervised reduction

1) Model-based Reduction

- Requires a-priori knowledge on the system
- We are dealing with a complex black-box simulator, hence some of the internal behaviors can be behave differently from the expected ones
- 2) Supervised Dimensionality Reduction
 - Fully Data-Driven approach, theoretically it **does not need any a priori knowledge**
 - The results are very close if not better than the model-based approach
 - Only one hyper-parameter to tune: δ which allows to select:
 - Filter complexity
 - Filter robustness
 - Computational complexity
 - Filter performance

Conclusions

Complete overview

- Supervised and Model-based reductions have the same trade-off between convergence and accuracy of results depending on the number of parameters
- Supervised reductions seems to have the best overall results
- Unsupervised reductions
 perform good but have the
 largest variance

Conclusions about TiL estimation

Flow diagram

We have found that:

- Unsupervised reduction will be used only if the problem is numerically intractable
- Supervised reduction performs very well

General procedure for dimensionality reduction of large-scale optimization problems in Twin-in-the-loop estimation

0

Twin-in-the-Loop control

Twin-in-the-Loop estimation

Conclusions

Conclusions

The Twin-in-the-loop approach

- The TiL approach significantly simplifies the End-of-Line tuning of filters and controllers:
 - ✓ Simpler system structures (with less parameters)
 - $\checkmark\,$ Few dedicated experiments via active learning
- More opportunities offered by the new framework:
 - \checkmark A single estimator for many signals
 - ✓ Nonlinear state-feedback control even if states are not available
- Challenges:
 - \checkmark The single estimator may require too many parameters
 - ✓ Robustness properties of TiL schemes still under investigation
 - \checkmark Evaluation on different case studies
- Future works:
 - $\checkmark\,$ Robust solutions to the above challenges
 - ✓ Formal properties
 - \checkmark Different optimization algorithms

Acknowledgements

POLITECNICO MILANO 1863

THANK YOU!!!

